The function is

1. let's factorize the expression

:

the zeros of f(x) are the values of x which make f(x) = 0.
from the factorized form of the function, we see that the roots are:
-3, multiplicity 1
3, multiplicity 1
0, multiplicity 3
(the multiplicity of the roots is the power of each factor of f(x) )
2.
The end behavior of f(x), whose term of largest degree is

, is the same as the end behavior of

, which has a well known graph. Check the picture attached.
(similarly the end behavior of an even degree polynomial, could be compared to the end behavior of

)
so, like the graph of

, the graph of

:
"As x goes to negative infinity, f(x) goes to negative infinity, and as x goes to positive infinity, f(x) goes to positive infinity. "
114.
Just add all of them and that's it :)
Answer:

So then P =11000 is the minimum that the least populated district could have.
Step-by-step explanation:
We have a big total of N = 132000 for the population.
And we know that we divide this population into 11 districts
And we have this info given "no district is to have a population that is more than 10 percent greater than the population of any other district"
Let's assume that P represent our minimum value for a district in the population. The range of possible values for the population of each district would be between P and 1.1 P
The interest on this case is find the minimum value for P and in order to do this we can assume that 1 district present the minimum and the other 10 the maximum value 1.1P in order to find which value of P satisfy this condition, and we have this:


So then P =11000 is the minimum that the least populated district could have.
Answer:
ft/min is the rate of changing of width
Step-by-step explanation:
Given -
The area always remain constant i.2 2 square feet.
Height of the rectangle = 2 feet
Rate of changing of height = 6 feet per minute
Since area is constant
2 sq ft = (2 * 6) ft/min * 1 * x ft/min
x =
ft/min
Actually there is enough information to solve this
problem. First, let us find the total per row and per column.
(see attached pic)
P(Grade 10 | opposed) with P(opposed | Grade 10)
P(Grade 10 | opposed) = Number in Grade 10 who are opposed
/ Total number of Opposed (column)
P(Grade 10 | opposed) = 13 / 41 = 0.3171
P(opposed | Grade 10) = Number in Grade 10 who are opposed
/ Total number in Grade 10 (row)
P(opposed | Grade 10) = 13 / 32 = 0.4063
Therefore:
P(Grade 10 | opposed) IS NOT EQUAL P(opposed | Grade 10),
hence they are dependent events.
Answer:
P(Grade 10 | opposed) < P(opposed | Grade 10)