The answer is 224.7 you got to turn 30% into decimal which is 0.30
then multiply 0.30 and 749 which equals 224.7
Check the picture below.
so notice, their perimeter is the same, because the perimeter is just one rod anyway, and all rods are the same length, thus
Hey
So my brother posted this on Yahoo
Draw a line from the center of the circle to one of the ends of the chord (water surface) and another to the point at greatest depth. A right-angled triangle is formed. Length of side to the water-surface is 5 cm, the hypot is 7 cm.
<span>What you do now is the following: </span>
<span>Calculate the angle θ in the corner of the right-angled triangle by: cos θ = 5/7 ⇒ θ = cos ˉ¹ (5/7) </span>
<span>So θ is approx 44.4°, so the angle subtended at the center of the circle by the water surface is roughly 88.8° </span>
<span>The area shaded will then be the area of the sector minus the area of the triangle above the water in your diagram. </span>
<span>Shaded area ≃ 88.8/360*area of circle - ½*7*7*sin88.8° </span>
<span>= 88.8/360*π*7² - 24.5*sin 88.8° </span>
<span>≃ 13.5 cm² </span>
<span>(using area of ∆ = ½.a.b.sin C for the triangle) </span>
<span>b) </span>
<span>volume of water = cross-sectional area * length </span>
<span>≃ 13.5 * 30 cm³ </span>
<span>≃ 404 cm³</span>
Hoped it Helped
Complete question is missing, so i have attached it.
Answer:
Percentile is 74th percentile
Step-by-step explanation:
All the lengths given are;
Bear Lengths 36.5 37.5 39.5 40.5 41.5 42.5 43.0 46.0 46.5 46.5 48.5 48.5 48.5 49.5 51.5 52.5 53.0 53.0 54.5 56.8 57.5 58.5 58.5 58.5 59.0 60.5 60.5 61.0 61.0 61.5 62.0 62.5 63.5 63.5 63.5 64.0 64.0 64.5 64.5 65.5 66.5 67.0 67.5 69.0 69.5 70.5 72.0 72.5 72.5 72.5 72.5 73.0 76.0 77.5
The number of lengths (inches) of bears given are 54 in number.
We are looking for the percentile corresponding to 65.5 in.
Looking at the lengths given, since they are already arranged from smallest to highest, let's locate the position of 65.5 in.
The position of 65.5 in is the 40th among 54 lengths given.
If the percentile is P, then;
P% x 54 = 40
P = (40 × 100)/54
P ≈ 74