The answer is adequate nutrition, regular physical activity, and practical ways to reduce calories while retaining important nutrients.
Explanation:
Despite that adequate nutrition, regular physical activity, and practical ways to reduce calories while retaining important nutrients is one of the best strategy to reducing weight, most time it is very difficult for those that want to reduce or control their weight to discipline themselves enough to follow these routine. But one an individual that want to loose weight or live a healthy lifestyle is able to follow these procedures he/she will surely loose weight.
Answer:
(a) F= 6.68*10¹¹⁴ N (-k)
(b) F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
Explanation
To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:
F=q* v X B Formula (1 )
q: charge (C)
v: velocity (m/s)
B: magnetic field (T)
vXB : cross product between the velocity vector and the magnetic field vector
Data
q= -1.24 * 10¹¹⁰ C
v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j
B =(1.40 T)i
B =(1.40 T)k
Problem development
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =
= - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* 5.39* 10⁴ m/s* N/ C*m/s (-k)
F= 6.68*10¹¹⁴ N (-k)
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =
=( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* ( 5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s
F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>
Answer:
Honda won by 0.14 s
Explanation:
We are given that
Distance =S=200 m
Initial velocity of Honda=u=0m/s
Initial velocity of Porsche=u'=0m/s
Acceleration of Honda=
Acceleration of Porsche's=
Time taken by Honda to start=1 s

Substitute the values




Time taken by Honda=11.55 s
Now, time taken by Porsche



Total time taken by Porsche=10.69+1=11.69 s
Because it start 1 s late
Time taken by Honda is less than Porsche .Therefore, Honda won and
Time =11.69-11.55=0.14 s
Honda won by 0.14 s
Solution for the problem is:
Total momentum before collision is always equal to total
momentum after collision. So note that:
Momentum of car A = 5000 x Xm/s
Momentum of car A + B = 15,000 x 2m/s
So combining the two, will give us the equation:
15,000/5,000 = 3
3 x 2 =6m/s