answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
2 years ago
9

Calculate the binding energy e of the boron nucleus 11 5b (1ev=1.602×10−19j). express your answer in millions of electron volts

to four significant figures.
Physics
1 answer:
nignag [31]2 years ago
7 0
<span>Depends on the precision you're working to. proton mass ~ 1.00728 amu neutron mass ~ 1.00866 amu electron mass ~ electron mass = 0.000549 amu Binding mass is: mass of constituents - mass of atom Eg for nitrogen: (7*1.00728)-(7*1.00866)-(7*0.000549) -14.003074 = 0.11235amu Binding energy is: E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So: 0.11235 * 931.5 = 104.6MeV Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV This is probably about right; it sounds like the right size! Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :) 1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules). It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>
You might be interested in
A shuttle on Earth has a mass of 4.5 E 5 kg. Compare its weight on Earth to its weight while in orbit at a height of 6.3 E 5 met
faltersainse [42]

Answer:

83%

Explanation:

On the surface, the weight is:

W = GMm / R²

where G is the gravitational constant, M is the mass of the Earth, m is the mass of the shuttle, and R is the radius of the Earth.

In orbit, the weight is:

w = GMm / (R+h)²

where h is the height of the shuttle above the surface of the Earth.

The ratio is:

w/W = R² / (R+h)²

w/W = (R / (R+h))²

Given that R = 6.4×10⁶ m and h = 6.3×10⁵ m:

w/W = (6.4×10⁶ / 7.03×10⁶)²

w/W = 0.83

The shuttle in orbit retains 83% of its weight on Earth.

4 0
2 years ago
For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
ikadub [295]

Answer:

no idea

Explanation:

7 0
2 years ago
A thin stream of water flows smoothly from a faucet and falls straight down. at one point the water is flowing at a speed of v1
kati45 [8]
<span>The formulas are, v1d1² = v2d2² ........ (1) h = (v2²-v1²)/2g ...... (2) Given that, v1 = 1.71 m/s we assume that the stream has decreased by a factor d2 =0.805d1 then, v1d1² = v2 (0.805d1)² cancelled both side d1² then we get, v1 = v2 (0.805)² v1 = v2 (0.648025) Sub v1 = 1.71, 1.71 = v2 (0.648025) v2 = 1.71/0.648025 v2 = 2.638787083831642 v2 = 2.64 m/s The vertical distance formula, h = (v2²-v1²)/2g We know that value of gravity constant is 9.8 m/s² h = {(2.64)² - (1.71)²)/2(9.8) h = {(6.9696) - (2.9241)}/19.6 h = (4.0455)/19.6 h = 0.2064030612244898 h = 0.21 cm Therefore, the vertical distance h = 0.21 cm.</span>
8 0
2 years ago
FLASH FLOODS CAN CAUSE VEHICLES TO FLOAT AND FILL WITH WATER, TRAPPING AND DROWNING PEOPLE. WHILE ESPECIALLY DANGEROUS AT NIGHT
levacccp [35]

Answer:

FLASH FLOODS CAN CAUSE VEHICLES TO FLOAT AND FILL WITH WATER, TRAPPING AND DROWNING PEOPLE. WHILE ESPECIALLY DANGEROUS AT NIGHT AND IN DEEP WATER, EVEN ____ INCHES OF WATER CAN FLOAT SOME SMALL CARS.

The Answer is SIX Inches.

Explanation:

Flash floods: are short-term events and are associated with short, high-intensity rainfall which occur when creeks that are normally dry fill up and other creeks overflow. Densely populated areas have a high risk of flash floods. Water levels in flash floods can rise one foot in five minutes making Six inches of water able to reach the bottom of most passenger cars. Moving water will exert pressure on a car. The car floats downstream when stream force exceeds the friction force, the car will be carried when bouyancy force (which is the upward force exerted by any fluid upon a body placed in it) is greater than vehicle weight.

8 0
2 years ago
A high school physics instructor catches one of his students chewing gum in class. He decides to discipline the student by askin
KengaRu [80]

a) 219.8 rad/s

b) 20.0 rad/s^2

c) 2.9 m/s^2

d) 7005 m/s^2

e) Towards the axis of rotation

f) 0 m/s^2

g) 31.9 m/s

Explanation:

a)

The angular velocity of an object in rotation is the rate of change of its angular position, so

\omega=\frac{\theta}{t}

where

\theta is the angular displacement

t is the time elapsed

In this problem, we are told that the maximum angular velocity is

\omega_{max}=35 rev/s

The angle covered during 1 revolution is

\theta=2\pi rad

Therefore, the maximum angular velocity is:

\omega_{max}=35 \cdot 2\pi = 219.8 rad/s

b)

The angular acceleration of an object in rotation is the rate of change of the angular velocity:

\alpha = \frac{\Delta \omega}{t}

where

\Delta \omega is the change in angular velocity

t is the time elapsed

Here we have:

\omega_0 = 0 is the initial angular velocity

\omega_{max}=219.8 rad/s is the final angular velocity

t = 11 s is the time elapsed

Therefore, the angular acceleration is:

\alpha = \frac{219.8-0}{11}=20.0 rad/s^2

c)

For an object in rotation, the acceleration has two components:

- A radial acceleration, called centripetal acceleration, towards the centre of the circle

- A tangential acceleration, tangential to the circle

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

Here we have

\alpha =20.0 rad/s^2

d = 29 cm is the diameter, so the radius is

r = d/2 = 14.5 cm = 0.145 m

So the tangential acceleration is

a_t=(20.0)(0.145)=2.9 m/s^2

d)

The magnitude of the radial (centripetal) acceleration is given by

a_c = \omega^2 r

where

\omega is the angular velocity

r is the radius of the circle

Here we have:

\omega_{max}=219.8 rad/s is the angular velocity when the fan is at full speed

r = 0.145 m is the distance of the gum from the centre of the circle

Therefore, the radial acceleration is

a_c=(219.8)^2(0.145)=7005 m/s^2

e)

The direction of the centripetal acceleration in a rotational motion is always towards the centre of the axis of rotation.

Therefore also in this case, the direction of the centripetal acceleration is towards the axis of rotation of the fan.

f)

The magnitude of the tangential acceleration of the fan at any moment is given by

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

When the fan is rotating at full speed, we have:

\alpha=0, since the fan is no longer accelerating, because the angular velocity is no longer changing

r = 0.145 m

Therefore, the tangential acceleration when the fan is at full speed is

a_t=(0)(0.145)=0 m/s^2

g)

The linear speed of an object in rotational motion is related to the angular velocity by the formula:

v=\omega r

where

v is the linear speed

\omega is the angular velocity

r is the radius

When the fan is rotating at maximum angular velocity, we have:

\omega=219.8 rad/s

r = 0.145 m

Therefore, the linear speed of the gum as it is un-stucked from the fan will be:

v=(219.8)(0.145)=31.9 m/s

7 0
2 years ago
Other questions:
  • A worker pushes a 1.50 x 10^3 N crate with a horizontal force of 345 N a distance of 24.0 m. Assume the coefficient of kinetic f
    9·2 answers
  • calculate the work done to stretch an elastic string by 40cm if a force of 10N produces an extension of 4cm in it?
    10·1 answer
  • A heat engine has a thermal efficiency of 45%. how much power does the engine produce when heat is transferred into it at a rate
    11·1 answer
  • A brick is resting on a rough incline as shown in the figure. The friction force acting on the brick, along the incline, is
    9·2 answers
  • A steel plate shine but wooden vessel desnt
    15·3 answers
  • What conclusion can be derived by comparing the central tendencies of the two data sets?
    6·1 answer
  • Imagine a small child whose legs are half as long as her parent’s legs. If her parent can walk at maximum speed V, at what maxim
    15·1 answer
  • A ski lift has a one-way length of 1 km and a vertical rise of 200 m. The chairs are spaced 20 m apart, and each chair can seat
    15·1 answer
  • 7. A local sign company needs to install a new billboard. The signpost is 30 m tall, and the ladder truck is parked 24 m away fr
    10·1 answer
  • The average standard rectangular building brick has a mass of 3.10 kg and dimensions of 225 m x 112 m x 75 m. The gravitational
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!