Answer:
0.01154 A
Explanation:
We have given the energy in the magnetic field
Value of inductance L =0.060 H
Energy stored in magnetic field is given by 


So the current flowing through rectangular toroid will be 0.01154 A
Is there a picture that I can see
Answer: 8.1 x 10^24
Explanation:
I(t) = (0.6 A) e^(-t/6 hr)
I'll leave out units for neatness: I(t) = 0.6e^(-t/6)
If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).
For neatness let k = 1/(6x3600) = 4.63x10^-5, then:
I(t) = 0.6e^(-kt)
Providing t is in seconds, total charge Q in coulombs is
Q= ∫ I(t).dt evaluated from t=0 to t=∞.
Q = ∫(0.6e^(-kt)
= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.
= -(0.6/k)[e^-∞ - e^-0]
= -0.6/k[0 - 1]
= 0.6/k
= 0.6/(4.63x10^-5)
= 12958 C
Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.
Answer:
Explanation:
Suppose the distance between the two cities is D and the velocity in calm weather is V . The total time taken in two way travel is given by
Total distance / velocity
= 2 D / V
Suppose velocity of wind is v . Then in one way the velocity of airplane will become V + v and in the return trip its velocity will be V - v
Total time taken
= 
= 
= 
= 
= The denominator contains a factor

which is less than one so time calculated will be more than
2D / V
Hence in the second case time taken will be more .