Answer:
The answer is below
Explanation:
a) The weight of the combined system is the sum of the weight of the water and the weight of the tank

b) Since the weight of a system can be divided into smaller portions, hence weight is an extensive property.
c) When analyzing the acceleration of gases as they flow through a nozzle, the geometry of the nozzle which is an open system can be chosen as our system.
d) Given that:

Answer:

where P is density of air and v flow is volume flow rate, so in order to find velocity of air and mass flow rate formula is given by :

so velocity is:

Answer: 0.95 inches
Explanation:
A direct load on a column is considered or referred to as an axial compressive load. A direct concentric load is considered axial. If the load is off center it is termed eccentric and is no longer axially applied.
The length= 64 inches
Ends are fixed Le= 64/2 = 32 inches
Factor Of Safety (FOS) = 3. 0
E= 10.6× 10^6 ps
σy= 4000ps
The square cross-section= ia^4/12
PE= π^2EI/Le^2
6500= 3.142^2 × 10^6 × a^4/12×32^2
a^4= 0.81 => a=0.81 inches => a=0.95 inches
Given σy= 4000ps
σallowable= σy/3= 40000/3= 13333. 33psi
Load acting= 6500
Area= a^2= 0.95 ×0.95= 0.9025
σactual=6500/0.9025
σ actual < σallowable
The dimension a= 0.95 inches
Answer: 133.88 MPa approximately 134 MPa
Explanation:
Given
Plane strains fracture toughness, k = 26 MPa
Stress at which fracture occurs, σ = 112 MPa
Maximum internal crack length, l = 8.6 mm = 8.6*10^-3 m
Critical internal crack length, l' = 6 mm = 6*10^-3 m
We know that
σ = K/(Y.√πa), where
112 MPa = 26 MPa / Y.√[3.142 * 8.6*10^-3)/2]
112 MPa = 26 MPa / Y.√(3.142 * 0.043)
112 = 26 / Y.√1.35*10^-2
112 = 26 / Y * 0.116
Y = 26 / 112 * 0.116
Y = 26 / 13
Y = 2
σ = K/(Y.√πa), using l'instead of l and, using Y as 2
σ = 26 / 2 * [√3.142 * (6*10^-3/2)]
σ = 26 / 2 * √(3.142 *3*10^-3)
σ = 26 / 2 * √0.009426
σ = 26 / 2 * 0.0971
σ = 26 / 0.1942
σ = 133.88 MPa
Answer:
Heat loss=85.9W/m^2
ΔT1(Steel)=0.04C
ΔT2(Brick1)=110.13C
ΔT3(Mwood)=343.6C
ΔT1(Brick2)=154.18C
Explanation:
raise the heat transfer equation from the air inside the wall to the outside air from the wall, because that is where you have the temperature data, to find the heat.
To find the temperatures you use the heat found in the previous step, and you use the conduction and convection equations in each wall layer.
I attached the procedure