Answer:
Ability to rotate at higher speeds
Explanation:
Constant K1 becomes greater than the other constant K2
This translates to that the motor being able to rotate at high speeds, without necessarily exceeding the nominal armature voltage.
The armature voltage is the voltage that is developed around the terminals of the armature winding of an Alternating Current, i.e AC or a Direct Current, i.e DC machine during the period in which it tries to generate power.
Answer:
Qin = 1857 kJ
Explanation:
Given
m = 0.5 Kg
T₁ = 25°C = (25 + 273) K = 298 K
P₁ = 100 kPa
P₂ = 500 kPa
First, the temperature when the piston starts rising is determined from the ideal gas equations at the initial state and at that state:
T₂ = T₁*P₂/P₁
⇒ T₂ = 298 K*(500 kPa/100 kPa) = 1490 K
Until the piston starts rising no work is done so the heat transfer is the change in internal energy
Qin = ΔU = m*cv*(T₂-T₁)
⇒ Qin = 0.5*3.1156*(1490 - 298) kJ = 1857 kJ
Answer:
concentration of Mg ion = 0.0122 g/L
Explanation:
Given data;
initial concentration of Magnesium in water is 40 mg/l
concentration of 
we have dissociation reaction Magnesium dioxide

from above reaction we can conclude
concentration of 
Mass of magnesium ion is calculated as = Mg mole * molar mass of magnesium
concentration of Mg ion = 0.0005*24.305 g/mol = 0.0122 g/L