Answer:
I dont even know
Step-by-step explanation:
too complicated
Okay so probability is just percentage of a whole, right?
So you have 14 White Eggs + 15 Brown Eggs + 11 Lemons.
Add all those numbers together and you get your whole.
14 + 15 = 29 29+11 = 40
40 is your whole.
So because you want to know how likely it is to pick up an egg, you would follow these steps.
100/40 = 2.5 (For each part of the 40, it is worth 2.5 percent.)
2.5 x 29 = 72.5
Your probability of picking an egg out of the bask is 72.5 percent or 72.5 out of 100.
1) the form of the equation may be written as y = A(X - Xo)(X - X1)
Where Xo and X1 are the two roots of the equation.
2) We can fix the system of coordinates so that the vertex is in the middle of the gate => Xo = - 40 and X1 = +40
=> y = A (X + 40) (X - 40) = A (X^2 - 1600)
3) The height, at X = 0 is 25
=> A(0 - 1600) = 25
=> -1600A = 25 => A = -25 / 1600 = - 1/64
4) The equation is y = - [1/64] (X^2 - 1600)
5) You can present it in different equivalent forms.
Some of those other forms are:
1) - 64y = (x^2 - 1600)
2) x^2 = - 64y + 1600
3) X^2 = - 64 (y - 25)
Multiplication, hope I could help!
Answer:
Only Elijah's model is correct
Step-by-step explanation:
The data given in the question tells us they have 12 games left on their soccer team. Each one of them tried to simulate the fact by creating some model which look like a balance between quantities.
Elijah placed 3 cubes of value 1 and a cube of value x on one side of a balance. On the other side, he placed 15 cubes of value 1. He was obviously modeling the fact that 15 cubes (games due to play in our case) should be equal to 3 cubes (games already played) plus the x numbers left to play
This model if perfect, since the only way to equilibrate the balance is setting x to 12, the games left to play
Jonathan used a table with 3 x's in a row and a 15 in the second row, trying to model the same situation. To our interpretation, this table doesn't show the number of games left to play. If we equate 3x = 15, we get x=5 which has nothing to do with the situation explained in the question, so this model is not correct.