Answer:
a. 0.71
b. 0.9863
Step-by-step explanation:
a. From the histogram, the relative frequency of houses with a value less than 500,000 is 0.34 and 0.37
-#The probability can therefore be calculated as:

Hence, the probability of the house value being less than 500,000 is o.71
b.
-From the info provided, we calculate the mean=403 and the standard deviation is 278 The probability that the mean value of a sample of n=40 is less than 500000 can be calculated as below:

Hence, the probability that the mean value of 40 randomly selected houses is less than 500,000 is 0.9863
So since her balance must be at least 500, her ballance cannot reach 500
so 794-500=294
see how many 25's you can fit into 294
we know that 4 25's =100 and 294 is roughly 300
so 4 times 3=12
we minus one of the 25's because 294 is less than 300 so
the innequality is
>means more than
794-25x>500
Given:
Cost of four lines = $125
Cost of each additional line = $15
Jason wants to spend at most $200 per month on cell phone expenses.
To find:
The inequality for the given situation.
Solution:
Let
be the number of additional line.
Cost of one additional line = $15
Cost of
additional line = 
Total cost = Fixed cost + Addition cost
= 
It is given that Jason wants to spend at most $200 per month on cell phone expenses. It means the total cost must be less than or equal to 200.

Therefore, the correct option is C.
Given:
μ = 68 in, population mean
σ = 3 in, population standard deviation
Calculate z-scores for the following random variable and determine their probabilities from standard tables.
x = 72 in:
z = (x-μ)/σ = (72-68)/3 = 1.333
P(x) = 0.9088
x = 64 in:
z = (64 -38)/3 = -1.333
P(x) = 0.0912
x = 65 in
z = (65 - 68)/3 = -1
P(x) = 0.1587
x = 71:
z = (71-68)/3 = 1
P(x) = 0.8413
Part (a)
For x > 72 in, obtain
300 - 300*0.9088 = 27.36
Answer: 27
Part (b)
For x ≤ 64 in, obtain
300*0.0912 = 27.36
Answer: 27
Part (c)
For 65 ≤ x ≤ 71, obtain
300*(0.8413 - 0.1587) = 204.78
Answer: 204
Part (d)
For x = 68 in, obtain
z = 0
P(x) = 0.5
The number of students is
300*0.5 = 150
Answer: 150