The stereo system costs $256.
Step-by-step explanation:
Given:
Cost of the stereo system = $320.
The discount Zenaida received = 20%.
To Find:
Cost of the stereo system after the discount=?
Solution:
Step1: Finding the discount amount:
Discount percentage =20
Discount amount = original cost × discount percent
Substituting the values,





Step 2: Removing the discounted amount from the original price
Final cost of the stereo system =original cost of the stereo system –discount amount
Substituting the values we get,
Final cost=320-64
Final cost=256
Result:
Thus the cost of the stereo system after discount is $256
Answer:
if i can be brainliest that would be great
f(x) = x^2+3x-10
f(x+5) = (x+5)^2+3(x+5)-10 ... replace every x with x+5
f(x+5) = (x^2+10x+25)+3(x+5)-10
f(x+5) = x^2+10x+25+3x+15-10
f(x+5) = x^2+13x+30
Compare this with x^2+kx+30 and we see that k = 13
Factor and solve the equation below
x^2+13x+30 = 0
(x+10)(x+3) = 0
x+10 = 0 or x+3 = 0
x = -10 or x = -3
The smallest zero is x = -10 as its the left-most value on a number line.
There is a 29% chance that the next pizza would be cheese
Answer:
a) 0.82
b) 0.18
Step-by-step explanation:
We are given that
P(F)=0.69
P(R)=0.42
P(F and R)=0.29.
a)
P(course has a final exam or a research paper)=P(F or R)=?
P(F or R)=P(F)+P(R)- P(F and R)
P(F or R)=0.69+0.42-0.29
P(F or R)=1.11-0.29
P(F or R)=0.82.
Thus, the the probability that a course has a final exam or a research paper is 0.82.
b)
P( NEITHER of two requirements)=P(F' and R')=?
According to De Morgan's law
P(A' and B')=[P(A or B)]'
P(A' and B')=1-P(A or B)
P(A' and B')=1-0.82
P(A' and B')=0.18
Thus, the probability that a course has NEITHER of these two requirements is 0.18.