Answer:
knowledge of animal behavior and anatomy
Explanation:
the qualification that will make Milton successful in his research is a knowledge of animal behaviour and also their anatomy. the knowledge of whales behaviour has opened his eyes into their world so he knows to a great deal about them. it is through his knowledge of the behaviour of whales that he's able to get used to their migrating patterns to know where and when to find them. Also, through the body anatomy of whales he knows what their movement is like.
Answer:

Explanation:
the half life of the given circuit is given by

where [/tex]\tau = RC[/tex]

Given 
resistance in the circuit is 40 ohm and to extend the half cycle we added new resister of 48 ohm. the net resitance is 40+48 = 88 ohms
now the new half life is

Divide equation 2 by 1


putting all value we get new half life


Answer:
The velocity component v is 
Explanation:
Given that,
The velocity component of a steady, two-dimensional

We need to calculate the function of x
Using given equation

Where, a and b is constant
On differential

We need to calculate the velocity component v
Using equation of velocity

Put the value into the formula

Now, on integration w.r.t y

Hence, The velocity component v is 
Answer:
Principal Plane: It is that plane in a stressed body over which no shearing stresses act. As we know that in a stressed body on different planes 2 different kind of stresses act normal stresses acting normal to the plane ans shearing stresses acting in the plane. The special planes over which no shearing stresses act and only normal stresses are present are termed as principal planes.
Principal Stress: The stresses in the principal planes are termed as normal stresses.
Anelasticity: It is the behavior of a material in which no definite relation can found to exist between stress and strain at any point in the stressed body.
Yield Point: It is the point in the stress-strain curve of a body at which the stress in the body reaches it's yield value or the object is just about to undergo plastic deformation if we just increase value of stress above this value. It is often not well defined in high strength materials or in some materials such as mild steel 2 yield points are observed.
Ultimate tensile strength: It is the maximum value of stress that a body can develop prior to fracture.
Hardness: it is defined as the ability of the body to resist scratches or indentation or abrasion.
Toughness: It is the ability of the body to absorb energy and deform without fracture when it is loaded. The area under the stress strain curve is taken as a measure of toughness of the body.
Elastic limit: The stress limit upto which the body regains it's original shape upon removal of the stresses is termed as elastic limit of the body.
Answer:
hello the diagram attached to your question is missing attached below is the missing diagram
answer :
a) 48.11 MPa
b) - 55.55 MPa
Explanation:
First we consider the equilibrium moments about point A
∑ Ma = 0
( Fbd * 300cos30° ) + ( 24sin∅ * 450cos30° ) - ( 24cos∅ * 450sin30° ) = 0
therefore ;<em> Fbd = 36 ( cos ∅tan30° - sin∅ ) kN ----- ( 1 )</em>
A ) when ∅ = 0
Fbd = 20.7846 kN
link BD will be under tension when ∅ = 0, hence we will calculate the loading area using this equation
A = ( b - d ) t
b = 12 mm
d = 36 mm
t = 18
therefore loading area ( A ) = 432 mm^2
determine the maximum value of average normal stress in link BD using the relation below
бbd =
= 20.7846 kN / 432 mm^2 = 48.11 MPa
b) when ∅ = 90°
Fbd = -36 kN
the negativity indicate that the loading direction is in contrast to the assumed direction of loading
There is compression in link BD
next we have to calculate the loading area using this equation ;
A = b * t
b = 36mm
t = 18mm
hence loading area = 36 * 18 = 648 mm^2
determine the maximum value of average normal stress in link BD using the relation below
бbd =
= -36 kN / 648mm^2 = -55.55 MPa