Answer:
E. Mangroves have only one type of root system
Explanation:
Mangrove species are those species of plants found in a saline environment. The soil they are found is usually shallow and swampy (water-logged). They possess characteristics feature that helps them adapt and survie in their habitat.
One of those features is the possession of PNEUMATOPHORES OR BREATHING ROOTS, which is a kind of root system that extends out so that the pores on them can allow the intake of gases directly from the atmosphere.
Answer:
B. A proton gradient drives the formation of ATP from ADP and inorganic phosphate via ATP synthase.
Explanation:
Light reaction of photosynthesis includes the splitting of water in the presence of sunlight and electron transfer from PSII to PSI via an electron transport system. During the transfer of electron through cytochrome of the electron transport system, the proton concentration gradient is generated across thylakoids. The proton concentration gradient is harvested to drive ADP phosphorylation by the catalytic site of ATP synthase accompanied by downhill movement protons through its proton channels.
messenger RNA (mRNA) carries a transcript (copy) of the DNA's instructions out of the nucleus to the cytoplasm where it attaches to a ribosome.
transfer RNA (tRNA) begins to read (translate) the information on the attached mRNA and corresponding to this information, fetches the appropriate amino acids from the pool of free amino acids in the cytoplasm, and brings them to the ribosome where they are linked into a chain or polymer forming the primary structure of the desired protein.
Answer: Oxygen: Passive transport
Carbon dioxide: Passive transport
Fructose: Passive transport
Glutamine: Endocytosis
Sodium ion: Active
Potassium ion: active
Protein molecule: active
Explanation:
Hope this helps :)
This is because if the two metabolic processes were to be active at at the same time;
Two molecules of<u> ATPs</u> and <u>Guanosine triphophate </u>(sometimes used for energy transport) <u>will be expended per each cycle, with no compensatory rate of replacements present at the moment in the cell,this affects cell metabolism for energy availability</u>
<u>2</u> Both<u> Glycolysis and Gluconeogensis </u>are both<u> exergonic processes in cells. </u> The heat energy liberated from these Calorinogenic effects will be higher than what the natural thermodynamic barrier of cells can withstand. Consequently; the heat will raise temperature of the cells affecting metabolic activities of hormones and enzymes which are (proteins) ,and easily denature by high temperatures.
However, in muscles cells,gluconeogeneis is a compensasory process of Glycolysis. This because during active exercise with high metabolic demand in muscles cells, glucose is rapidly metabolise to to pyruvate,(but not at the rate that the Citric acid cycle can metabolise) for Lactic acid production by muscles cells for energy production. Pyruvate must be broken down rapidly so that NAD+ will be available for Glycolysis to continue. Therefore to sustain Glycolysis at this rate continuous supply of glucose is supplied from Gluconeogenesis.