Directing, ordering, or controlling
Answer:
Vx = 6.242 x 10raised to power 15
Vy = -6.242 x 10raised to power 15
Explanation:
from E = IVt
but V = IR from ohm's law and Q = It from faraday's first law
I = Q/t
E = Q/t x V x t = QV
hence, E =QV
V = E/Q
Answer:


Explanation:
If the question is: Determine the banking angle θ
We have the forces involved on the figure attached.
For this case we know that the weight is given by:

And for this case the centripetal acceleration would be given by:

If we analyze the sum of forces on x and y we have:


And if we solve for the force we got:



If we solve for the normal force we got:

In order to find the banking angle we use the fact that F =0


The velocity on this case is 120 mi/h if we convert this into ft/ s we got:

And then we have this:


Answer:
153.2 J
Explanation:
Let's first list our given parameters;
mass (m) of the block = 10 kg
which slides down ( i.e displacement) = 2 m
kinetic coefficient of friction (μk) = 0.2
In the diagram shown below; if we take an integral look at the component of force in the direction of the displacement; we have
Fcos 40°
100 (cos 40°)
76.60 N
Workdone by the friction force can now be determined as:
W =
× displacement
W = 76.60 × 2
W = 153.2 J
∴ the work done by the friction force = 153.2 J
Answer:
Your question is lacking some information attached is the missing part and the solution
A) AB = AD = BD = 0, BC = LC
AC = 
B) AB = AD = BC = BD = 0
AC = 
Explanation:
A) Forces in all members due to the load L in position A
assuming that BD goes slack from an inspection of Joint B
AB = 0 and BC = LC from Joint D, AD = 0 and CD = 4L/3 C
B) steps to arrive to the answer is attached below
AB = AD = BC = BD = 0
AC = 