A beam of light (travelling at the speed of light) would take 65 years to go and 65 years to come back from aldebaran, i.e. 130 years. You can send and receive a radio message (travelling at the speed of light, being electromagnetic radiation) taking so 130 years.
Given inequality: 2y−x ≤ −6
Option-1 : (-3,0)
2×0 - (-3) = 0 + 3 = 3 > -6
Not satisfied
Option-2 : (6,1)
2×1 - 6 = 2 - 6 = -4 > -6
Not satisfied
Option-3 : (1, -4)
2×(-4) - 1 = -8 - 1 = -9 < -6
Satisfied.
Thus, (1, -4) is a solution.
Option-4 : (0, -3)
2×(-3) - 0 = -6 - 0 = -6 = -6
Satisfied.
Thus, (0, -3) is a solution.
Option-5 : (2, -2)
2×(-2) - 2 = -4 - 2 = -6 = -6
Satisfied.
Thus, (2, -2) is a solution.
Solutions are: (1, -4), (0, -3) , (2, -2)
Given:
Pyramid A: Base is rectangle with length of 10 meters and width of 20 meters.
Pyramid B: Base is square with 10 meter sides.
Heights are the same.
Volume of rectangular pyramid = (L * W * H) / 3
Volume of square pyramid = a² * h/3
Let us assume that the height is 10 meters.
V of rectangular pyramid = (10m * 20m * 10m)/3 = 2000/3 = 666.67 m³
V of square pyramid = (10m)² * 10/3 = 100m² * 3.33 = 333.33 m³
The volume of pyramid A is TWICE the volume of pyramid B.
If the height of pyramid B increases to twice the of pyramid A, (from 10m to 20m),
V of square pyramid = (10m)² * (10*2)/3 = 100m² * 20m/3 = 100m² * 6.67m = 666.67 m³
The new volume of pyramid B is EQUAL to the volume of pyramid A.