Answer:
A) f(-3) = g(-4)
Step-by-step explanation: hope it helps
Answer:
77.76 times
Step-by-step explanation:
The average distance of Neptune from the sun
= 4.503 × 10
⁹ k
m
.
and Mercury = 5.791 × 10
⁷ k
m
.
Hence neptune is ( 4.503 × 10
⁹) ÷ (5.791
×
10
⁷ ) times farther from the sun than mercury
i.e.(
) × 10⁹⁻⁷ times
=
0.7776 × 10
² times
=
77.76 times.
<span>A
computer is normally $899 but is discounted to $799.
Question: What percent of the original price does Shawn pay?
=> 799 dollars is the discounted price
=> 899 dollars is the original price
=> 899 – 799 = 100 dollars – the discount price that was deducted to the
original price.
Solution
=> 100 / 899 = 0.11
=> 0.11 * 100% = 11%
Thus, the computer has a discount of 11%.</span>
Answer:
look it up because found the correct answer there
Step-by-step explanation:
Answer:
![x_3 = \left[\begin{array}{c}4&3&1\\0\end{array}\right]](https://tex.z-dn.net/?f=x_3%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%263%261%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
According to the given situation, The computation of all x in a set of a real number is shown below:
First we have to determine the
so that 
![\left[\begin{array}{cccc}1&-3&5&-5\\0&1&-3&5\\2&-4&4&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%5C0%261%26-3%265%5C%5C2%26-4%264%26-4%5Cend%7Barray%7D%5Cright%5D)
Now the augmented matrix is
![\left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\2&-4&4&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C2%26-4%264%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
After this, we decrease this to reduce the formation of the row echelon
![R_3 = R_3 -2R_1 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\0&2&-6&6\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_3%20%3D%20R_3%20-2R_1%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C0%262%26-6%266%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_3 = R_3 -2R_2 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\0&0&0&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_3%20%3D%20R_3%20-2R_2%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C0%260%260%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_2 = 4R_2 +5R_3 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&4&-12&0\ |\ 0\\0&0&0&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_2%20%3D%204R_2%20%2B5R_3%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%264%26-12%260%5C%20%7C%5C%200%5C%5C0%260%260%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_2 = \frac{R_2}{4}, R_3 = \frac{R_3}{-4} \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_2%20%3D%20%5Cfrac%7BR_2%7D%7B4%7D%2C%20%20R_3%20%3D%20%5Cfrac%7BR_3%7D%7B-4%7D%20%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%261%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_1 = R_1 +3 R_2 \rightarrow \left[\begin{array}{cccc}1&0&-4&-5\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&-1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_1%20%3D%20R_1%20%2B3%20R_2%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-4%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%26-1%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_1 = R_1 +5 R_3 \rightarrow \left[\begin{array}{cccc}1&0&-4&0\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&-1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_1%20%3D%20R_1%20%2B5%20R_3%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-4%260%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%26-1%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)

![x = \left[\begin{array}{c}4x_3&3x_3&x_3\\0\end{array}\right] \\\\ x_3 = \left[\begin{array}{c}4&3&1\\0\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4x_3%263x_3%26x_3%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%20x_3%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%263%261%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
By applying the above matrix, we can easily reach an answer