In order to solve this, you have to set up a systems of linear equations.
Let's say that children = c and adults = a
30a + 12c = 19,080
a + c = 960
I'm going to show you how to solve this system of linear equations by substitution, the easiest way to solve in my opinion.
a + c = 960
- c - c
---------------------- ⇒ Step 1: Solve for either a or c in either equation.
a = 960 - c
20(960 - c)+ 12c = 19,080
19,200 - 20c + 12c = 19,080
19,200 - 8c = 19,080
- 19,200 - 19,200
---------------------------------- ⇒ Step 2: Substitute in the value you got for a or c
8c = -120 into the opposite equation.
------ ---------
8 8
c = -15
30a + 12(-15) = 19,080
30a - 180 = 19,080
+ 180 + 180
-------------------------------
30a = 19,260
------- -----------
30 30
a = 642
__________________________________________________________
I just realized that there can't be a negative amount of children, so I'm sorry if these results are all wrong.
S = d/t
st = d
t = d/s
The time going is t1.
The time returning is t2.
The total time is 4 hours, so we have t1 + t2 = 4
The speed of the current is c.
The speed going is 9 + c.
The speed returning is 9 - c.
t1 = 16/(9 + c)
t2 = 16/(9 - c)
t1 + t2 = 16/(9 + c) + 16/(9 - c)
4 = 16/(9 - c) + 16/(9 + c)
1 = 4/(9 - c) + 4/(9 + c)
(9 + c)(9 - c) = 4(9 - c) + 4(9 + c)
81 - c^2 = 36 - 4c + 36 + 4c
81 - c^2 = 72
c^2 = 9
c^2 - 9 = 0
(c + 3)(c - 3) = 0
c + 3 = 0 or c - 3 = 0
c = -3 or c = 3
We discard the negative answer, and we get c = 3.
The speed of the current is 3 mph.
D 7
A million apologies if I’m wrong half of my brain is still on vacation!
<span>At least 75% of the data will fall within 2 standard deviations of the mean.
This is tricky problem. Usually when you're dealing with standard deviation, you have a bell curve, or something close to a bell curve and for such a data distribution, there will be approximately 95% of the data within 2 standard deviations of the mean. But if you don't know that you have a bell curve, you have to fall back to Chebyshev’s Theorem, which states that at least 75% of the data points will fall within 2 standard deviations of the mean for any set of numbers.</span>
Answer:
y - 13 = (5/2)(x - 4)
Step-by-step explanation:
Here we know the slope and one point on the line. Use the point-slope formula:
y - k = m(x - h).
Substituting 13 for k, 4 for x and 2.5 for m, we get:
y - 13 = (5/2)(x - 4)\