answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
2 years ago
10

Investigate the following harvesting model both qualitatively and analytically. If a constant number h of fish are harvested fro

m a fishery per unit time, then a model for the population P(t) of the fishery at time t is given by:
dP/dt = P(a − bP) − h, P(0) = P0,
where a, b, h, and P0 are positive constants. Suppose a = 7, b = 1, and h = 49 4 .


Determine whether the population becomes extinct in finite time.

a. The population does not become extinct in finite time.
b. The population becomes extinct in finite time for all values of Po.
c. The population becomes extinct in finite time if Po > 7/2
d. The population becomes extinct in finite time if Po < 7/2
e. The population becomes extinct in finite time if Po= 7/2

If so, find that time. (If not, enter NONE.)
t=_______
Mathematics
1 answer:
zalisa [80]2 years ago
5 0

Answer:

a. The population does not become extinct in finite time.

Step-by-step explanation:

The model for the population of the fishery is

dP/dt = P(a-bP)-h, P(0) = P_0

If we rearrange and replace the constants we have:

\frac{dP}{P(7-P)-49/4} =dt\\\\-4 (\frac{dP}{4(P-7)P+49}) =dt\\\\-4 \frac{dP}{(2P-7)^2} =dt\\\\-4 \int\frac{dP}{(2P-7)^2} =\int dt\\\\-4(-\frac{1}{2(2P-7)})=t+C\\\\\frac{2}{2P-7}=t+C\\\\ t=0 \,\,\, P(0)=P_0\\\\\frac{2}{2P_0-7}=0+C\\\\C=\frac{2}{2P_0-7}

Now we can calculate if the population become 0 in any finite time

\frac{2}{2P-7}=t+\frac{2}{2P_0-7}\\\\\frac{2}{2*0-7}=t+\frac{2}{2P_0-7}\\\\-\frac{2}{7}=t+\frac{2}{2P_0-7}\\\\

To be a finite time, t>0

t=-\frac{2}{7}-\frac{2}{2P_0-7}=0\\\\-\frac{2}{2P_0-7}=\frac{2}{7}\\\\7-2P_0=7\\\\P_0=0

We can conclude that the only finite time in which P=0 is when the initial population is 0.

Because P0 is a positive constant, we can say that the population does not become extint in finite time.

You might be interested in
Imaginá que tenés 125 dados cúbicos del mismo tamaño ¿Cuantos dados de altura tiene el cubo de mayor tamaño que podés armar apil
kumpel [21]

Answer:

(i) Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

Step-by-step explanation:

(i) Sabemos por la Geometría Euclídea del Espacio que un cubo es un sólido regular con 6 caras cuadradas y longitudes iguales. Cada dado tiene un volumen de 1 dado cúbico y 125 dados dan un volumen total de 125 dados cúbicos.

El volumen de un cubo está dado por la siguiente fórmula:

V = L^{3}

Donde:

L - Longitud de la arista, medida en dados.

V - Volumen del cubo, medido en dados cúbicos.

Ahora, necesitamos despejar la longitud de la arista para calcular la altura máxima posible:

L = \sqrt[3]{V}

Dado que V = 125\,dados^{3}, encontramos que la altura del cubo de mayor tamaño sería:

L =\sqrt[3]{125\,dados^{3}}

L = 5\,dados

Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) El área cuadrada formada por cubos está determinada por la siguiente fórmula:

A = L^{2}

Donde:

L - Longitud de arista, medida en dados.

A - Área, medida en dados cuadrados.

Puesto que la longitud de arista se basa en un conjunto discreto, esto es, el número de dados disponibles, debemos encontrar el valor máximo de L tal que no supere 125 y de un área entera. Es decir:

L \leq 125\,dados

Si cada cubo tiene un área de 1 dado cuadrado, entonces un cuadrado conformado por 125 dados tiene un área total de 125 dados cuadrados. Entonces:

L^{2}< 125\,dados^{2}

Esto nos lleva a decir que:

L < 11.180\,dados

Entonces, la longitud máxima del cuadrado con la mayor cantidad de cubos posible es de 11 dados. El número total requerido de cubos es el cuadrado de esa cifra, es decir:

n = (11\,dados)^{2}

n = 121\,dados

Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

4 0
2 years ago
David made a class banner out of a large rectangular piece of paper. He cut a
Irina18 [472]

Answer:

100 in²

Step-by-step explanation:

The area of the banner is equal to the area of the initial rectangle minus the area of the cutout triangle.

The rectangle has a height of 8 inches and width of 14 inches, so its area is:

A = (8 in) (14 in) = 112 in²

The triangle has a base of 8 inches and a height of 3 inches, so its area is:

A = ½ (8 in) (3 in) = 12 in²

So the area of the banner is 112 in² − 12 in² = 100 in².

6 0
2 years ago
Sal's Sandwich Shop sells wraps and sandwiches as part of its lunch specials. The profit on every sandwich is $2 and the profit
Ann [662]
Let
x--------> <span>the number of sandwich lunch specials sold
y-------> </span><span>the number of wrap lunch specials sold

we know that
2x+3y=1470

Part 1) </span><span>Change the equation to slope-intercept form. Identify the slope and y-intercept of the equation. Be sure to show all your work.

we know that
</span>the equation to slope-intercept form is of the form
y=mx+b
so
2x+3y=1470------> solve for y
3y=1470-2x-----> divide by 3 both sides
y=(-2/3)x+1470/3
y=(-2/3)x+490

the slope m=-2/3
the y-intercept is 490


Part 2) <span>Describe how you would graph this line using the slope-intercept method. Be sure to write using complete sentences.

</span><span>the slope is -2/3  and the y-intercept is 490

Plot the point (0,490)------>  the y-intercept.
With the slope count 3 squares to the right and 2 squares down and plot that point, which is (0+3,490-2)--------> (3,488)
Draw a line through the two points  

Part 3) </span><span>Write the equation in function notation. Explain what the graph of the function represents. Be sure to use complete sentences.

In function notation, the equation is:
f(x)=(-2/3)x+490
The graph of this function represents how the value of the function varies as the value of x varies. Looking back at the question context, this graph specifically represents how many wraps could have been sold at each number of sandwich sales, in order to maintain the same profit of $1470.</span><span>

Part 4) </span>Graph the function. On the graph, make sure to label the intercepts. You may graph your equation by hand on a piece of paper and scan your work or you may use graphing technology

using a graph tool
see the attached figure

Part 5) Suppose Sal's total profit on lunch specials for the next month is $1,593. The profit amounts are the same: $2 for each sandwich and $3 for each wrap. In a paragraph of at least three complete sentences, explain how the graphs of the functions for the two months are similar and how they are different

we have that
2x+3y=1593
3y=1593-2x--------> y=(-2/3)x+531
slope=(-2/3)
y intercept=531
therefore
similarities : same slope
differences : y intercepts are different.
<span>This is basically telling me that the lines are parallel lines because they have the same slope.
</span>
6) Below is a graph that represents the total profits for a third month. Write the equation of the line that represents this graph. Show your work or explain how you determined the equations

Select two points on the line and write down their coordinates

Let
 A( 0,300)  B (450,0)
a) find the slope
m=(y2-y1)/(x2-x1)----> m=(0-300)/(450-0)----> m=-2/3
b) with the slope m=(-2/3) and the point A (0,300)
y-y1=m*(x-x1)-----> y-300=(-2/3)*(x-0)----> y=(-2/3)x+300

the answer Part 6) is
y=(-2/3)x+300

7 0
2 years ago
Suppose a research paper states that the distribution of the daily sea-ice advance/retreat from each sensor is similar and is ap
Luda [366]

Answer:

The value of the parameter is λ is 0.03553357

Step-by-step explanation:

Consider the provided function.

f(x) = 0.5\lambda e^{-\lambda |x|} for −∞ < x < ∞.

It is given that standard deviation is given as 39.8 km.

Now we need to calculate the value of parameter λ.

The general formula for the probability density function of the double exponential distribution is: f(x)=\frac{e^{-|\frac{x-\mu}{\beta}|}}{2\beta}

Where μ is the location parameter and β is the scale parameter.

Compare the provided equation with the above formula we get.

\lambda=\frac{1}{\beta} and μ = 0.

Standard deviation = √2β

S.D=\sqrt{2} \beta\\\beta=\frac{39.8}{\sqrt{2}}\\\beta=28.1424

Now substitute the value of β in \lambda=\frac{1}{\beta}.

\lambda=\frac{1}{28.1424}=0.03553357

Hence, the value of the parameter is λ is 0.03553357

3 0
2 years ago
Which of the following best describes the slope of the line below? pls help asap
Harlamova29_29 [7]

Answer:

Step-by-step explanation:

Undefined.

3 0
1 year ago
Read 2 more answers
Other questions:
  • Franklin rolls a pair of six-sided fair dice with sides numbered 1 through 6. The probability that the sum of the numbers rolled
    15·2 answers
  • What is the value of the discriminant for the quadratic equation 0 = 2x2 + x – 3?
    15·2 answers
  • The triangles in the diagram are congruent. If mF = 40°, mA = 80°, and mG = 60°, what is mB?
    15·2 answers
  • 5x-27+7x-32+9x-8=180
    6·1 answer
  • The Taieri Plain in New Zealand is 6 feet below sea level (or –6 feet). If you are standing 3 feet above sea level, is your elev
    10·2 answers
  • A toy factory makes 5,000 teddy bears per day. The supervisor randomly selects 10 teddy bears from all 5,000 teddy bears and use
    9·1 answer
  • A brand of cereal had 1.21.21, point, 2 milligrams (\text{mg})(mg)left parenthesis, start text, m, g, end text, right parenthesi
    14·1 answer
  • a jar contains ten black buttons and six brown buttons. If nine buttons are picked at random, what is the probability that exact
    7·1 answer
  • Raynor earns $4 in rewards for every $75 he spends at the grocery store . If he earned $44 in rewards last month, how much did h
    5·1 answer
  • 8. Divide 63.924 g by 20 g.​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!