if they double in size every 3 months and there are 12 months in a year, just multiply 250x4=1000 then multiply that by 2. 1000x2=2000
The conversion rate US dollars to Euros is represented with the function:
E(n)=0.72n
n- number of dollars
E(n) - Euros as a function of US dollars
The conversion rate Euros to Dirhams is :
D(x)=5.10x
x- number of Euros
D(x)- Dirhams as a function of Euros
<span>We are trying to find D(x) in terms of n.
D(x) = 5.10x
x can be rewritten as E(n)
D(x) = 5.10(E(n))
D(x) = 5.10(E(n))
D(x) = 5.10(0.72n)
D(x) = 3.672n </span>
According to this the following statement is true:
A) <span>(D x E)(n) = 5.10(0.72n)</span>
Answer:
D
Step-by-step explanation:
Under a reflection in the x- axis
a point (x, y ) → (x, - y )
That is the x- coordinate remains unchanged while the y- coordinate is the negative of the original y- coordinate.
Given
A(- 3, 5 ) → A'(- 3, - 5 )
B(2, 8 ) → B'(2, - 8)
C(- 4, - 5 ) → C'(- 4, 5 )
The rule for reflection in the x- axis has been applied here → D
Its depends on how many times you score during the game
in second game the number of points increases as a geometric sequence
with common ratio 2
so for example if you score ten times in first game you get 2000 points
if you score 10 times in Game 2 you score 2 * (2^10) - 1 = 2046 points
so playing 10 or more games is best with Game 2. Any less plays favours gane 1.
let's say the point dividing JK is say point P, so the JK segment gets split into two pieces, JP and PK
![\bf ~~~~~~~~~~~~\textit{internal division of a line segment} \\\\\\ J(-25,10)\qquad K(5,-20)\qquad \qquad \stackrel{\textit{ratio from J to K}}{7:3} \\\\\\ \cfrac{J~~\begin{matrix} P \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{~~\begin{matrix} P \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~K} = \cfrac{7}{3}\implies \cfrac{J}{K} = \cfrac{7}{3}\implies3J=7K\implies 3(-25,10)=7(5,-20)\\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Binternal%20division%20of%20a%20line%20segment%7D%20%5C%5C%5C%5C%5C%5C%20J%28-25%2C10%29%5Cqquad%20K%285%2C-20%29%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bratio%20from%20J%20to%20K%7D%7D%7B7%3A3%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7BJ~~%5Cbegin%7Bmatrix%7D%20P%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B~~%5Cbegin%7Bmatrix%7D%20P%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~K%7D%20%3D%20%5Ccfrac%7B7%7D%7B3%7D%5Cimplies%20%5Ccfrac%7BJ%7D%7BK%7D%20%3D%20%5Ccfrac%7B7%7D%7B3%7D%5Cimplies3J%3D7K%5Cimplies%203%28-25%2C10%29%3D7%285%2C-20%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf P=\left(\frac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \frac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\[-0.35em] ~\dotfill\\\\ P=\left(\cfrac{(3\cdot -25)+(7\cdot 5)}{7+3}\quad ,\quad \stackrel{\textit{y-coordinate}}{\cfrac{(3\cdot 10)+(7\cdot -20)}{7+3}}\right) \\\\\\ P=\left( \qquad ,\quad \cfrac{30-140}{10} \right)\implies P=\left(\qquad ,~~\cfrac{-110}{10} \right)\implies P=(\qquad ,\quad -11)](https://tex.z-dn.net/?f=%5Cbf%20P%3D%5Cleft%28%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22x%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cquad%20%2C%5Cquad%20%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22y%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cright%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20P%3D%5Cleft%28%5Ccfrac%7B%283%5Ccdot%20-25%29%2B%287%5Ccdot%205%29%7D%7B7%2B3%7D%5Cquad%20%2C%5Cquad%20%5Cstackrel%7B%5Ctextit%7By-coordinate%7D%7D%7B%5Ccfrac%7B%283%5Ccdot%2010%29%2B%287%5Ccdot%20-20%29%7D%7B7%2B3%7D%7D%5Cright%29%20%5C%5C%5C%5C%5C%5C%20P%3D%5Cleft%28%20%5Cqquad%20%2C%5Cquad%20%5Ccfrac%7B30-140%7D%7B10%7D%20%5Cright%29%5Cimplies%20P%3D%5Cleft%28%5Cqquad%20%2C~~%5Ccfrac%7B-110%7D%7B10%7D%20%5Cright%29%5Cimplies%20P%3D%28%5Cqquad%20%2C%5Cquad%20-11%29)