answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
2 years ago
10

1. Consider a city of 10 square kilometers. A macro cellular system design divides the city up into square cells of 1 square kil

ometer, where each cell can accommodate 100 users. Find the total number of users that can be accommodated in the system and the length of time it takes a mobile user to traverse a cell (approximate time needed for a handover) when moving at 30 Km/hour. If the cell size is reduced to 100 square meters and everything in the system scales so that 100 users can be accommodated in these smaller cells, and the total number of users the system can accommodate and the length of time it takes to traverse a cell.
Engineering
1 answer:
kakasveta [241]2 years ago
8 0

Answer:

a) n = 1000\,users, b)\Delta t_{min} = \frac{1}{30}\,h, \Delta t_{max} = \frac{\sqrt{2} }{30}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h, c) n = 10000000\,users, \Delta t_{min} = \frac{1}{3000}\,h, \Delta t_{max} = \frac{\sqrt{2} }{3000}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

Explanation:

a) The total number of users that can be accomodated in the system is:

n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )

n = 1000\,users

b) The length of the side of each cell is:

l = \sqrt{1\,km^{2}}

l = 1\,km

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{30}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{30}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h

c) The total number of users that can be accomodated in the system is:

n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )

n = 10000000\,users

The length of each side of the cell is:

l = \sqrt{100\,m^{2}}

l = 10\,m

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{3000}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

You might be interested in
Explain why failure of this garden hose occurred near its end and why the tear occurred along its length. Use numerical values t
alukav5142 [94]

Answer:

  • hoop stress
  • longitudinal stress
  • material used

all this could led to the failure of the garden hose and the tear along the length

Explanation:

For the flow of water to occur in any equipment, water has to flow from a high pressure to a low pressure. considering the pipe, water is flowing at a constant pressure of 30 psi inside the pipe which is assumed to be higher than the allowable operating pressure of the pipe. but the greatest change in pressure will occur at the end of the hose because at that point the water is trying to leave the hose into the atmosphere, therefore the great change in pressure along the length of the hose closest to the end of the hose will cause a tear there. also the other factors that might lead to the failure of the garden hose includes :

hoop stress ( which acts along the circumference of the pipe):

αh = \frac{PD}{2T}     EQUATION 1

and Longitudinal stress ( acting along the length of the pipe )

αl = \frac{PD}{4T}       EQUATION 2

where p = water pressure inside the hose

          d = diameter of hose, T = thickness of hose

we can as well attribute the failure of the hose to the material used in making the hose .

assume for a thin cylindrical pipe material used to be

\frac{D}{T} ≥  20

insert this value into equation 1

αh = \frac{20 *30}{2}  = 60/2 = 30 psi

the allowable hoop stress was developed by the material which could have also led to the failure of the garden hose

8 0
2 years ago
A distância entre duas retas reversas é a medida de um segmento orientado que *?
Agata [3.3K]

Answer:

Fatec – SP) Seja A um ponto pertencente à reta r, contida no plano α. É verdade que:

a) existe uma única reta que é perpendicular à reta r no ponto A.

b) existe uma única reta, não contida no plano α, que é paralela à reta r.

c) existem infinitos planos distintos entre si, paralelos ao plano α, que contém a reta r.

d) existem infinitos planos distintos entre si, perpendiculares ao plano α e que contêm a reta r.

e) existem infinitas retas distintas entre si, contidas no plano α e que são paralelas à reta r.

2. (UF – AL) Classifique como verdadeira ou falsa cada uma das afirmativas abaixo.

1) Duas retas que não têm pontos com

8 0
2 years ago
A fatigue test was conducted in which the mean stress was 46.2 MPa and the stress amplitude was 219 MPa.
sleet_krkn [62]

Answer:

a)σ₁ = 265.2 MPa

b)σ₂ = -172.8 MPa

c)Stress\ ratio =-0.65

d)Range = 438 MPa

Explanation:

Given that

Mean stress ,σm= 46.2 MPa

Stress amplitude ,σa= 219 MPa

Lets take

Maximum stress level = σ₁

Minimum stress level =σ₂

The mean stress given as

\sigma_m=\dfrac{\sigma_1+\sigma_2}{2}

2\sigma_m={\sigma_1+\sigma_2}

2 x 46.2 =  σ₁ +  σ₂

 σ₁ +  σ₂ = 92.4 MPa    --------1

The amplitude stress given as

\sigma_a=\dfrac{\sigma_1-\sigma_2}{2}

2\sigma_a={\sigma_1-\sigma_2}

2 x 219 =  σ₁ -  σ₂

 σ₁ -  σ₂ = 438 MPa    --------2

By adding the above equation

2  σ₁ = 530.4

σ₁ = 265.2 MPa

-σ₂ = 438 -265.2 MPa

σ₂ = -172.8 MPa

Stress ratio

Stress\ ratio =\dfrac{\sigma_{min}}{\sigma_{max}}

Stress\ ratio =\dfrac{-172.8}{265.2}

Stress\ ratio =-0.65

Range = 265.2 MPa - ( -172.8 MPa)

Range = 438 MPa

8 0
2 years ago
3/63 A 2‐kg sphere S is being moved in a vertical plane by a robotic arm. When the angle θ is 30°, the angular velocity of the a
miss Akunina [59]

Answer:

Ps=19.62N

Explanation:

The detailed explanation of answer is given in attached files.

5 0
2 years ago
Develop a preliminary work breakdown structure (WBS) for a small one-story commercial building to be constructed on the site of
Zielflug [23.3K]

Answer:

The preliminary work breakdown structure will be divided into two steps, the first is to draw the first level and the second is to draw the second level.

Explanation:

Please look at attachment.

6 0
2 years ago
Read 2 more answers
Other questions:
  • Mary is interested in developing new machines that would increase the productivity of small scale farmers. After high school, wh
    8·1 answer
  • a. Replacing standard incandescent lightbulbs with energy-efficient compact fluorescent lightbulbs can save a lot of energy. Cal
    9·1 answer
  • 5. A typical paper clip weighs 0.59 g and consists of BCC iron. Calculate (a) the number of
    5·1 answer
  • Oil in an engine is being cooled by air in a cross-flow heat exchanger, where both fluids are unmixed. Oil (cp = 2000 J/kg. K) f
    12·1 answer
  • The rigid bar CDE is attached to a pin support at E and rests on the 30 mm diameter brass cylinder BD. A 22 mm diameter steel ro
    8·1 answer
  • If the electric field just outside a thin conducting sheet is equal to 1.5 N/C, determine the surface charge density on the cond
    9·1 answer
  • Given a 5x5 matrix for Playfair cipher a. How many possible keys does the Playfair cipher have? Ignore the fact that some keys m
    6·1 answer
  • A three-story school has interior column bays that are spaced 25 ft apart in both directions. If the loading on the flat roof is
    7·1 answer
  • An inventor claims to have developed an engine that does not use fuel but operates as a power cycle at steady state while receiv
    10·2 answers
  • Benzene vapor at 480°C is cooled and converted to a liquid at 25°C in a continuous condenser. The condensate is drained into 1.7
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!