Answer
D
Step-by-step explanation:
D is correct because 1,400-400= 1,000
so he can only consume 1,000 more calories so 1,200 will cause him to go over 2,000
Answer:
(1). y = x ~ Exp (1/3).
(2). Check attachment.
(3). EY = 3(1 - e^-2).
(4). Var[y] = 3(1 - e^-2) (1 -3 (1 - e^-2)) - 36e^-2.
Step-by-step explanation:
Kindly check the attachment to aid in understanding the solution to the question.
So, from the question, we given the following parameters or information or data;
(A). The probability in which attempt to establish a video call via some social media app may fail with = 0.1.
(B). " If connection is established and if no connection failure occurs thereafter, then the duration of a typical video call in minutes is an exponential random variable X with E[X] = 3. "
(C). "due to an unfortunate bug in the app all calls are disconnected after 6 minutes. Let random variable Y denote the overall call duration (i.e., Y = 0 in case of failure to connect, Y = 6 when a call gets disconnected due to the bug, and Y = X otherwise.)."
(1). Hence, for FY(y) = y = x ~ Exp (1/3) for the condition that zero is equal to y = x < 6.
(2). Check attachment.
(3). EY = 3(1 - e^-2).
(4). Var[y] = 3(1 - e^-2) (1 -3 (1 - e^-2)) - 36e^-2.
The condition to follow in order to solve this question is that y = 0 if x ≤ 0, y = x if 0 ≤ x ≤ 6 and y = 6 if x ≥ 6.
Answer:
82
Step-by-step explanation:
The sum of scores for the 9 tests must be 90 * 9 = 810. The sum of scores for the 8 tests is 8 * 91 = 728 so the lowest score is 810 - 728 = 82.
Answer:
Step-by-step explanation:
x
2
+
x
−
6
=
(
x
+
3
)
(
x
−
2
)
x
2
−
3
x
−
4
=
(
x
−
4
)
(
x
+
1
)
Each of the linear factors occurs precisely once, so the sign of the given rational expression will change at each of the points where one of the linear factors is zero. That is at:
x
=
−
3
,
−
1
,
2
,
4
Note that when
x
is large, the
x
2
terms will dominate the values of the numerator and denominator, making both positive.
Hence the sign of the value of the rational expression in each of the intervals
(
−
∞
,
−
3
)
,
(
−
3
,
−
1
)
,
(
−
1
,
2
)
,
(
2
,
4
)
and
(
4
,
∞
)
follows the pattern
+
−
+
−
+
. Hence the intervals
(
−
3
,
−
1
)
and
(
2
,
4
)
are both part of the solution set.
When
x
=
−
1
or
x
=
4
, the denominator is zero so the rational expression is undefined. Since the numerator is non-zero at those values, the function will have vertical asymptotes at those points (and not satisfy the inequality).
When
x
=
−
3
or
x
=
2
, the numerator is zero and the denominator is non-zero. So the function will be zero and satisfy the inequality at those points.
Hence the solution is:
x
∈
[
−
3
,
−
1
)
∪
[
2
,
4
)
graph{(x^2+x-6)/(x^2-3x-4) [-10, 10, -5, 5]}