Answer:
![4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%204x%5E5%5Csqrt%5B3%5D%7B3x%7D%20)
Step-by-step explanation:
I'm not sure I understand the problem, but I think it's this:
![\sqrt[3]{16x^7} \times \sqrt[3]{12x^9} =](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B16x%5E7%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20)
![= \sqrt[3]{16 \times 12 \times x^{16}}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B16%20%5Ctimes%2012%20%5Ctimes%20x%5E%7B16%7D%7D)
![= \sqrt[3]{192 \times x^{15} \times x}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B192%20%5Ctimes%20x%5E%7B15%7D%20%5Ctimes%20x%7D)
![= \sqrt[3]{64 \times 3 \times (x^5)^3 \times x}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B3%5D%7B64%20%5Ctimes%203%20%5Ctimes%20%28x%5E5%29%5E3%20%5Ctimes%20x%7D%20)
![= \sqrt[3]{4^3 \times 3 \times (x^5)^3 \times x}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B3%5D%7B4%5E3%20%5Ctimes%203%20%5Ctimes%20%28x%5E5%29%5E3%20%5Ctimes%20x%7D%20)
![= 4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%20%3D%204x%5E5%5Csqrt%5B3%5D%7B3x%7D%20)
9.2 x 13.8 = 126.96, now usually to get the area of a triangle we would half this but because we have two of the same triangle we would then have to double it again so they cancel each other out. We then do 6.9 x 9.2 which equals 63.48 and again we have two of the same triangle so no need to half it. So we add the two totals of 126.96 and 63.48 together to get 190.44.
Answer:
17
Step-by-step explanation:
Answer:
<em>Mean of the sample = 27.83</em>
<em> The variance of the the sample = 106.96</em>
<em> </em><em>Standard deviation of the sample = 10.34</em>
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given random sample of six employees
x 26 32 29 16 45 19
mean of the sample

Mean of the given data = 27.83
<u>Step(ii):-</u>
<u>Given data</u>
x : 26 32 29 16 45 19
x - x⁻ : -1.83 4.17 1.17 -11.83 17.17 -8.83
(x - x⁻)² : 3.3489 17.3889 1.3689 139.9489 294.80 77.9689
∑ (x-x⁻)² = 534.8245
Given sample size 'n' =6
The variance of given data
S² = ∑(x-x⁻)² / n-1

The variance of the given sample = 106.9649
<u> Step(iii):-</u>
Standard deviation of the given data

Standard deviation of the sample = 10.3423