To find the time at which both balls are at the same height, set the equations equal to each other then solve for t.
h = -16t^2 + 56t
h = -16t^2 + 156t - 248
-16t^2 + 56t = -16t^2 + 156t - 248
You can cancel out the -16t^2's to get
56t = 156t - 248
=> 0 = 100t - 248
=> 248 = 100t
=> 2.48 = t
Using this time value, plug into either equation to find the height.
h = 16(2.48)^2 + 56(2.48)
Final answer:
h = 40.4736
Hope I helped :)
Given that mean=56.1 and standard deviation=8.2, P(x>67.5) will be found as follows:
The z-score is given by:
z=(x-μ)/σ
thus the z-score will be given by:
z=(67.5-56.1)/8.2
z=11.4/8.2
z=1.39
thus
P(z=1.39)=0.9177
thus:
P(x>67.5)=1-P(z>0.9177)
=1-0.9177
=0.0823
Answer: A. 0.0823
Answer:
AC and OA
Step-by-step explanation:
-A secant is a line connecting two points on the circle.
-Given the square OABC of sides 6cm and a circle of r=5cm and the center of the circle as O, and that the radius of the circle is less than the side of the square:
-The circle passes through OA and OC, but doesn't pass through AB and BC.
Hence, AC and OA are the circle's secants.
Answer:
23.1% probability of meeting at least one person with the flu
Step-by-step explanation:
For each encounter, there are only two possible outcomes. Either the person has the flu, or the person does not. The probability of a person having the flu is independent of any other person. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
Infection rate of 2%
This means that 
Thirteen random encounters
This means that 
Probability of meeting at least one person with the flu
Either you meet none, or you meet at least one. The sum of the probabilities of these outcomes is 1. So

We want
. Then

In which



23.1% probability of meeting at least one person with the flu
<h3>
Answer:</h3>
Any 1 of the following transformations will work. There are others that are also possible.
- translation up 4 units, followed by rotation CCW by 90°.
- rotation CCW by 90°, followed by translation left 4 units.
- rotation CCW 90° about the center (-2, -2).
<h3>
Step-by-step explanation:</h3>
The order of vertices ABC is clockwise, as is the order of vertices A'B'C'. Thus, if reflection is involved, there are two (or some other even number of) reflections.
The orientation of line CA is to the east. The orientation of line C'A' is to the north, so the figure has been rotated 90° CCW. In general, such rotation can be accomplished by a single transformation about a suitably chosen center. Here, we're told there is <em>a sequence of transformations</em> involved, so a single rotation is probably not of interest.
If we rotate the figure 90° CCW, we find it ends up 4 units east of the final position. So, one possible transformation is 90° CCW + translation left 4 units.
If we rotate the final figure 90° CW, we find it ends up 4 units north of the starting position. So, another possible transformation is translation up 4 units + rotation 90° CCW.
Of course, rotation 90° CCW in either case is the same as rotation 270° CW.
_____
We have described transformations that will work. What we don't know is what is in your drop-down menu lists. There are many other transformations that will also work, so guessing the one you have available is difficult.