First of all, a bit of theory: since the area of a square is given by

where s is the length of the square. So, if we invert this function we have
.
Moreover, the diagonal of a square cuts the square in two isosceles right triangles, whose legs are the sides, so the diagonal is the hypothenuse and it can be found by

So, the diagonal is the side length, multiplied by the square root of 2.
With that being said, your function could be something like this:
double diagonalFromArea(double area) {
double side = Math.sqrt(area);
double diagonal = side * Math.sqrt(2);
return diagonal;
}
<u> Solution-</u>
The given function is,






Therefore, at x=0, -1, 1 , f(x) will be 0 . Hence, 0, -1 ,1 are the x-intercepts.
Plotting the graph on desmos, the graph will be as in the attachment.
5-1 and 1/8=
5-1-1/8=
4+1-1-1/8=
4-1+8/8-1/8=
3+7/8=
3 and 7/8 lb left
From the given data, we can generate two equations with two unknowns.
We let x = number of loaves of bread
y = number of batches of muffins
For the equation of the flour requirement:
17 = 3.5x + 2.5y
<span>For the equation of the sugar requirement:
</span>4.5 = 0.75x + 0.75y
We evaluate the solutions by manipulating one of the equations into terms of the other. We use the first equation.We write x in terms of y.
x = (4.5/0.75) - y
Substitute the third equation to the second equation.
17 = (3.5((4.5/0.75)-y)) + 2.5y
Evaluating y and x, we have,
y = 4 and x = 2
Thus, from the amounts she has in hand, she can make 4 loaves of bread and 2 batches of muffins.
divide the total tax by the rate
8.75% = 0.0875
4.59/.0875 = 52.457 round to 52.46