376/93 = 4.04301075
376/ 93.01 = 4.04257607.
So 376 divided by 93 is greater because the higher the divisor, the lower the quotient.
Conditional probability is a measure of the probability of an event given that another event has occurred. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B), or sometimes

.
The conditional probability of event A happening, given that event B has happened, written as P(A|B) is given by

In the question, we were told that there are three randomly selected coins which can be a nickel, a dime or a quarter.
The probability of selecting one coin is

Part A:
To find <span>the probability that all three coins are quarters if the first two envelopes Jeanne opens each contain a quarter, let the event that all three coins are quarters be A and the event that the first two envelopes Jeanne opens each contain a quarter be B.
P(A) means that the first envelope contains a quarter AND the second envelope contains a quarter AND the third envelope contains a quarter.
Thus

</span><span>P(B) means that the first envelope contains a quarter AND the
second envelope contains a quarter
</span><span>Thus

Therefore,

Part B:
</span>To find the probability that all three coins are different if the first envelope Jeanne opens contains a dime<span>, let the event that all three coins are different be C and the event that the first envelope Jeanne opens contains a dime be D.
</span><span>

</span><span>

</span><span>
Therefore,

</span>
For this case, the first thing we are going to do is rewrite the function.
We have then:
h (x) = 505.5 + 8 * exp (-0.9 * x)
We evaluate the value of x = 5 in the function.
We have then:
h (5) = 505.5 + 8 * exp (-0.9 * 5)
h (5) = 505.588872
round to the nearest tenth:
h (5) = 505.6
Answer:
the value of h (5) is:
h (5) = 505.6
Answer:
P(t) = 27000 * (1/9)^(t/4)
Step-by-step explanation:
This problem can me modelled with an exponencial formula:
P = Po * (1+r)^t
Where P is the final value, Po is the inicial value, r is the rate and t is the amount of time.
In this problem, we have that the inicial population/value is 27000, the rate is -8/9 (negative because the population decays), and the time t is in months, so as the rate is for every 4 months, we use the value (t/4) in the exponencial.
So, our function will be:
P(t) = 27000 * (1-8/9)^(t/4)
P(t) = 27000 * (1/9)^(t/4)