answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
2 years ago
8

A survey was conducted in a large city to investigate public opinion on banning the use of trans fats in restaurant cooking. A r

andom sample of 230 city residents with school-age children was selected, and another random sample of 341 city residents without school-age children was also selected. Of those with school-age children, 94 opposed the banning of trans fats, and of those without school-age children, 147 opposed the banning of trans fats. An appropriate hypothesis test was conducted to investigate whether there was a difference between the two groups of residents in their opposition to the banning of trans fats. Is there convincing statistical evidence of a difference between the two population proportions at the significance level of 0.05
Mathematics
1 answer:
alukav5142 [94]2 years ago
3 0

Answer:

There is no enough evidence to claim that there is a difference between the two population proportions.

Step-by-step explanation:

We have to perform an hypothesis testing for a difference between two population proportions.

The null hypothesis will state that both proportions are the same, and the alternative hypothesis will state that they differ. This would be than a two-side hypothesis test.

We can write this as:

H_0: \pi_1-\pi_2=0\\\\H_a:\pi_1-\pi_2\neq0

The significance level for this test is 0.05.

The sample of city residents with school-age children has a sample size n1=230 and a sample proportion p1=0.41

p_1=X_1/N_1=94/230=0.41

The sample of city residents without school-age children has a sample size n2=341 and a sample proportion p2=0.51

p_2=X_2/N_2=147/341=0.43

The weighted p, needed to calculate the standard error, is the weighted average of both sample proportions:

p=\dfrac{n_1p_1+n_2p_2}{n_1+n_2}=\dfrac{230*0.41+341*0.51}{230+341}=\dfrac{94+147}{571} =\dfrac{241}{571}=0.42

The standard error of the difference of proportions can now be calculated as:

\sigma_p=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.42*0.58}{230}+\dfrac{0.42*0.58}{341}}\\\\\\\sigma_p=\sqrt{\dfrac{0.2436}{230}+\dfrac{0.2436}{341}}=\sqrt{0.00106+0.00071}=\sqrt{0.00177}\\\\\\\sigma_p=0.042

The test statistic z is:

z=\dfrac{p_1-p_2}{\sigma_p}=\dfrac{0.41-0.43}{0.042}= \dfrac{0.020}{0.042}= 0.476

The P-value for this two side test and this value of the z-statistic is:

P-value=2*P(z>0.476)=0.634

The P-value is bigger than the significance level, so the effect is not significant. The null hypothesis failed to be rejected.

There is no enough evidence to claim that there is a difference between the two population proportions.

You might be interested in
• A researcher claims that less than 40% of U.S. cell phone owners use their phone for most of their online browsing. In a rando
antiseptic1488 [7]

Answer:

We failed to reject H₀

Z > -1.645

-1.84 > -1.645

We failed to reject H₀

p > α

0.03 > 0.01

We do not have significant evidence at a 1% significance level to claim that less than 40% of U.S. cell phone owners use their phones for most of their online browsing.

Step-by-step explanation:

Set up hypotheses:

Null hypotheses = H₀: p = 0.40

Alternate hypotheses = H₁: p < 0.40

Determine the level of significance and Z-score:

Given level of significance = 1% = 0.01

Since it is a lower tailed test,

Z-score = -2.33 (lower tailed)

Determine type of test:

Since the alternate hypothesis states that less than 40% of U.S. cell phone owners use their phone for most of their online browsing, therefore we will use a lower tailed test.

Select the test statistic:  

Since the sample size is quite large (n > 30) therefore, we will use Z-distribution.

Set up decision rule:

Since it is a lower tailed test, using a Z statistic at a significance level of 1%

We Reject H₀ if Z < -1.645

We Reject H₀ if p ≤ α

Compute the test statistic:

$ Z =  \frac{\hat{p} - p}{ \sqrt{\frac{p(1-p)}{n} }}  $

$ Z =  \frac{0.31 - 0.40}{ \sqrt{\frac{0.40(1-0.40)}{100} }}  $

$ Z =  \frac{- 0.09}{ 0.048989 }  $

Z = - 1.84

From the z-table, the p-value corresponding to the test statistic -1.84 is

p = 0.03288

Conclusion:

We failed to reject H₀

Z > -1.645

-1.84 > -1.645

We failed to reject H₀

p >  α

0.03 > 0.01

We do not have significant evidence at a 1% significance level to claim that less than 40% of U.S. cell phone owners use their phones for most of their online browsing.

8 0
2 years ago
Arthur took out a 20 year loan for $60,000 at an APR of 4.4% compounded monthly. Approximately how munch would save if he paid i
Eduardwww [97]
Monthly payments, P = {R/12*A}/{1- (1+R/12)^-12n}

Where R = APR = 4.4% = 0.044, A = Amount borrowed = $60,000, n = Time the loan will be repaid

For 20 years, n = 20 years
P1 = {0.044/12*60000}/{1- (1+0.044/12)^-12*20} = $376.36

Total amount to be paid in 20 years, A1 = 376.36*20*12 = $90,326.30

For 3 years early, n = 17 year
P2 = {0.044/12*60,000}/{1-(1+0.044/12)^-12*17} = $418.22

Total amount to be paid in 17 years, A2 = 418.22*17*12 = $85,316.98

The saving when the loan is paid off 3 year early = A1-A2 = 90,326.30 - 85,316.98 = $5,009.32

Therefore, the approximate amount of savings is A. $4,516.32. This value is lower than the one calculated since the time of repaying the loan does not change. After 17 years, the borrower only clears the remaining amount of the principle amount.
8 0
2 years ago
Read 2 more answers
Harrison has 30 cds in his music collection. If 40% of the cds are country and 30% are pop, how many are other types of music
Pavel [41]
Well you have to find out how many cd is 40% and 30% 
30% = 30x.3=9
40% = 30x.4=16
now add 16 and 9
16+9=25 now subtract 25 from 30 and see that you have 5 cd of a different type of music to find that as a % divide 5 by 35 to get .14 I rounded it to the nearest hundreth now move the decimal over 2 spots to get 14%
8 0
2 years ago
Read 2 more answers
Trapezoid CDEF was reflected across the x-axis followed by a 90° rotation about the origin to create the other trapezoid shown o
Delicious77 [7]

Answer:

yes

Step-by-step explanation:

7 1
2 years ago
Read 2 more answers
Ruth Ann wants to research two different careers, medical doctor and astronaut.
elixir [45]

Answer: visit the US Bureau of Labor Statistics website to find information on both careers

The career section

hope this helped :)

Step-by-step explanation: there is none

3 0
2 years ago
Read 2 more answers
Other questions:
  • Graph the six terms of a finite series where a1 = 5 and r = 1.25. I looked through my lessons and honestly do not get how to do
    13·1 answer
  • During a catered lunch, an average of 4 cups of tea are poured per minute. The lunch will last 2 hours. How many gallons of tea
    11·1 answer
  • A business bought some compact cars that cost $15,000 each, and some full–sized cars, that cost $23,000 each. A total of 20 cars
    11·1 answer
  • categorize the graph as linear increasing, linear decreasing, exponential growth, or exponential decay.
    10·2 answers
  • Express the relationship between race time and average speed in two equivalent forms to complete a 400-miles
    12·1 answer
  • Given: The coordinates of triangle PQR are P(0, 0), Q(2a, 0), and R(2b, 2c).
    13·1 answer
  • The data below are the final exam scores of 10 randomly selected statistics students and the number of hours they studied for th
    10·1 answer
  • Which of the following data could be graphed using a dot plot ?
    12·1 answer
  • Which is a true statement about an exterior angle of a triangle
    5·1 answer
  • The function y=-x^2+65x+256 models the number y of subscribers to a website, where x is the number of days since the website lau
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!