Class B has the most consistant sleep because there is less of a difference between 6.87 and 3.65 than the other classes.
Hey
So my brother posted this on Yahoo
Draw a line from the center of the circle to one of the ends of the chord (water surface) and another to the point at greatest depth. A right-angled triangle is formed. Length of side to the water-surface is 5 cm, the hypot is 7 cm.
<span>What you do now is the following: </span>
<span>Calculate the angle θ in the corner of the right-angled triangle by: cos θ = 5/7 ⇒ θ = cos ˉ¹ (5/7) </span>
<span>So θ is approx 44.4°, so the angle subtended at the center of the circle by the water surface is roughly 88.8° </span>
<span>The area shaded will then be the area of the sector minus the area of the triangle above the water in your diagram. </span>
<span>Shaded area ≃ 88.8/360*area of circle - ½*7*7*sin88.8° </span>
<span>= 88.8/360*π*7² - 24.5*sin 88.8° </span>
<span>≃ 13.5 cm² </span>
<span>(using area of ∆ = ½.a.b.sin C for the triangle) </span>
<span>b) </span>
<span>volume of water = cross-sectional area * length </span>
<span>≃ 13.5 * 30 cm³ </span>
<span>≃ 404 cm³</span>
Hoped it Helped
Evaluate 4-0.25g+0.5h4−0.25g+0.5h4, minus, 0, point, 25, g, plus, 0, point, 5, h when g=10g=10g, equals, 10 and h=5h=5h, equals,
Readme [11.4K]
I believe the correct given equation is in the form of:
4 – 0.25 g + 0.5 h
Now we are to evaluate the equation with the given values:
g = 10 and h = 5
What this actually means is that to evaluate simply means
to calculate for the value of the equation by plugging in the values of the
variables. Therefore:
4 – 0.25 g + 0.5 h = 4 – 0.25 (10) + 0.5 (5)
4 – 0.25 g + 0.5 h = 4 – 2.5 + 2.5
4 – 0.25 g + 0.5 h = 4
Therefore the value of the equation is:
4