Answer:
3rd Option
Step-by-step explanation:
Which equation is the inverse of y = 7x2 – 10?
y = StartFraction plus-or-minus StartRoot x + 10 EndRoot Over 7 EndFraction
y = plus-or-minus StartRoot StartFraction x + 10 Over 7 EndFraction EndRoot
x = plus-or-minus StartRoot StartFraction x Over 7 EndFraction + 10 EndRoot
y = StartFraction plus-or-minus StartRoot x EndRoot Over 7 EndFraction plus-or-minus StartFraction StartRoot 10 EndRoot Over 7 EndFraction
Answer:
Option d: Your friend is wrong, the statement should be revised as "the probability of obtaining a sample mean of 105 or more extreme from a random sample of n = 40 when the true population mean is assumed to be 100."
Step-by-step explanation:
We are given;
Null hypothesis; H0 : μ = 100
Alternative hypothesis; HA : μ ≠ 100
Sample mean; x = 105
Sample standard deviation; s = 10
Sample size; n = 40
p - value = 0.0016
Looking at the options, the first option is wrong because the sample size is not irrelevant her since it's more than 30.
The second option can't be correct because they just told us he is right without giving explanation.
The third option is wrong because 100 is the true population mean and not 150.
Thus we are left with Option D as the correct answer.
Answer:

Step-by-step explanation:
We know that the school district's income from property taxes were estimated at 1.4 million, but then we see that the actual income was 1.25 million.
To find the actual error, we must subtract 1.25 million 1.4 million.

150,000 thousand dollars or .15 million dollars.
Answer:
The maximum amount of time is 48.2 minutes
Step-by-step explanation:
We can use the equation for a line
y = mx+b
the inital value is 75 gallons ( that is b)
the slope is 2.5 gallons (that is m)
We know that we want to fill it to 195.5 gallons ( that would be y)
195.5 = 2.5x +75
We are going to solve for x (that is the number of minutes)
Subtract 75 from each side
195.5-75 = 2.5x +75-75
120.5 = 2.5x
Divide by 2.5 on each side
120.5/2.5 = 2.5x/2.5
48.2 =x
The maximum amount of time is 48.2 minutes