To solve this problem we will apply the first law of thermodynamics which details the relationship of energy conservation and the states that the system's energy has. Energy can be transformed but cannot be created or destroyed.
Accordingly, the rate of work done in one cycle and the heat transferred can be expressed under the function,

Substitute 1W for
and 1.5 W for 


Now calculcate the rate of specific internal energy increase,



The rate of specific internal energy increase is 1.6667W/kg
Answer:

Explanation:
The translational kinetic energy of the hoop is given by :
..................(1)
M is the mass of the hoop
v is the velocity of the hoop
The rotational kinetic energy of the hoop is given by :

Since, 

..............(2)
From equation (1) and (2) :

Therefore, the ratio of the translational kinetic energy to the rotational kinetic energy is 1.
Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf
Answer:

Explanation:
As we know that the equation of SHM is given as

here we know that

here we have

now we have


now we have

now at t = 2.3 s we have


Answer:
3.1×10⁻¹¹ N
Explanation:
Use Coulomb's law:
F = k q₁ q₂ / r²
F = (9×10⁹) (6.0×10⁻¹⁰) (2.3×10⁻¹⁵) / (0.02 m)²
F = 3.1×10⁻¹¹