In order to answer this question ... strange as it may seem ...
we only need one of those measurements that you gave us
that describe the door.
The door is hanging on frictionless hinges, and there's a torque
being applied to it that's trying to close it. All we need to do is apply
an equal torque in the opposite direction, and the door doesn't move.
Obviously, in order for our force to have the most effect, we want
to hold the door at the outer edge, farthest from the hinges. That
distance from the hinges is the width of the door ... 0.89 m.
We need to come up with 4.9 N-m of torque,
applied against the mechanical door-closer.
Torque is (force) x (distance from the hinge).
4.9 N-m = (force) x (0.89 m)
Divide each side by 0.89m: Force = (4.9 N-m) / (0.89 m)
= 5.506 N .
Answer:
Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.
Explanation:
Given:
Speed of sound in air = 320 m/s
Speed of sound in water = 1600 m/s
Time taken to reach certain distance in air = 2.5 sec
a.
We have to find the distance traveled by sound in air.
Distance = Product of speed and time.
⇒ 
⇒ 
⇒
meters.
b.
Now we have to find how much time the sound will take to travel in water.
⇒ Time = Ratio of distance and speed
⇒ 
⇒
<em> ...distance = 800 m and speed = 1600 m/s</em>
⇒ 
⇒
seconds.
Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.
1) 
When both the electric field and the magnetic field are acting on the electron normal to the beam and normal to each other, the electric force and the magnetic force on the electron have opposite directions: in order to produce no deflection on the electron beam, the two forces must be equal in magnitude

where
q is the electron charge
E is the magnitude of the electric field
v is the electron speed
B is the magnitude of the magnetic field
Solving the formula for v, we find

2) 4.1 mm
When the electric field is removed, only the magnetic force acts on the electron, providing the centripetal force that keeps the electron in a circular path:

where m is the mass of the electron and r is the radius of the trajectory. Solving the formula for r, we find

3) 
The speed of the electron in the circular trajectory is equal to the ratio between the circumference of the orbit,
, and the period, T:

Solving the equation for T and using the results found in 1) and 2), we find the period of the orbit:

Answer:
Explanation:
Acceleration is the time rate of change of velocity.
Acceleration and velocity are vectors
If east and north are the positive directions, the east moving vector is reduced to zero and the north moving vector increases from zero to 4 m/s.
There are 3 hours or 10800 seconds between 10 AM and 1 PM
a1 = √((-4)² + 4²) / 10800 = (√32) / 10800 m/s² ≈ 4.2 x 10⁻⁴ m/s²
There are 14400 seconds between 10 AM and 2 PM
The velocity changes are still the same
a2 = √((-4)² + 4²) / 10800 = (√32) / 14400 m/s² ≈ 3.9 x 10⁻⁴ m/s²
Answer:
a. 150 N
Explanation:
Gravitational Force: This is the force that act on a body under gravity.
The gravitational force always attract every object on or near the earth's surface. The earth therefore, exerts an attractive force on every object on or near it.
The S.I unit of gravitational force is Newton(N).
Mathematically, gravitational force of attraction is expressed as
(i) F = GmM/r² ........................ Equation 1 ( when it involves two object of different masses on the earth)
(ii) F = mg ............................... Equation 2 ( when it involves one mass and the gravitational field).
Given: m = 17 kg, g = 8.8 m/s²
Substituting into equation 2,
F = 17(8.8)
F = 149.6 N
F ≈ 150 N.
Thus the gravitational force = 150 N
The correct option is a. 150 N