answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
2 years ago
6

A hoop is rolling (without slipping) on a horizontal surface so it has two types of kinetic energy: translational kinetic energy

and rotational kinetic energy. The entire mass M of the hoop is concentrated at its rim, so its moment of inertia is I = MR2, where R is the radius. What is the ratio of the translational kinetic energy to the rotational kinetic energy?a) 2, b) 1/4, c) 4, d) 1/2 e) 1
Physics
1 answer:
LenaWriter [7]2 years ago
8 0

Answer:

\dfrac{T}{K}=1

Explanation:

The translational kinetic energy of the hoop is given by :

K=\dfrac{1}{2}Mv^2..................(1)

M is the mass of the hoop

v is the velocity of the hoop

The rotational kinetic energy of the hoop is given by :

T=\dfrac{1}{2}I\omega^2

Since, I=MR^2

\omega=\dfrac{v}{R}

T=\dfrac{1}{2}\times MR^2\times (\dfrac{v}{R})^2..............(2)

From equation (1) and (2) :

\dfrac{T}{K}=1

Therefore, the ratio of the translational kinetic energy to the rotational kinetic energy is 1.

You might be interested in
A professor's office door is 0.89 m wide, 2.0 m high, and 4.0 cm thick; has a mass of 25 kg ; and pivots on frictionless hinges.
taurus [48]
In order to answer this question ... strange as it may seem ...
we only need one of those measurements that you gave us
that describe the door.

The door is hanging on frictionless hinges, and there's a torque
being applied to it that's trying to close it.  All we need to do is apply
an equal torque in the opposite direction, and the door doesn't move.

Obviously, in order for our force to have the most effect, we want
to hold the door at the outer edge, farthest from the hinges.  That
distance from the hinges is the width of the door ... 0.89 m.

We need to come up with 4.9 N-m of torque,
applied against the mechanical door-closer.

Torque is (force) x (distance from the hinge).

                                    4.9 N-m  =  (force) x (0.89 m) 

Divide each side by 0.89m:    Force = (4.9 N-m) / (0.89 m)

                                                             =  5.506 N .
7 0
2 years ago
The speed of sound in air is 320 ms-1 and in water it is 1600 ms-1. It takes 2.5 s for sound to reach a certain distance from th
Nonamiya [84]

Answer:

Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.

Explanation:

Given:

Speed of sound in air = 320 m/s

Speed of sound in water = 1600 m/s

Time taken to reach certain distance in air = 2.5 sec

a.

We have to find the distance traveled by sound in air.

Distance = Product of speed and time.

⇒ Distance = Speed\times time\ taken

⇒ Distance = 320\times 2.5

⇒ Distance = 800 meters.

b.

Now we have to find how much time the sound will take to travel in water.

⇒ Time = Ratio of distance and speed

⇒ Time =\frac{distance}{speed}

⇒ Time =\frac{800}{1600}   <em>   ...distance = 800 m and speed = 1600 m/s</em>

⇒ Time =\frac{1}{2}

⇒ Time =0.5 seconds.

Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.

7 0
2 years ago
What is the speed of a beam of electrons when the simultaneous influence of an electric field of 1.56×104v/m and a magnetic fiel
sashaice [31]

1) 3.38\cdot 10^6 m/s

When both the electric field and the magnetic field are acting on the electron normal to the beam and normal to each other, the electric force and the magnetic force on the electron have opposite directions: in order to produce no deflection on the electron beam, the two forces must be equal in magnitude

F_E = F_B\\qE = qvB

where

q is the electron charge

E is the magnitude of the electric field

v is the electron speed

B is the magnitude of the magnetic field

Solving the formula for v, we find

v=\frac{E}{B}=\frac{1.56\cdot 10^4 V/m}{4.62\cdot 10^{-3} T}=3.38\cdot 10^6 m/s

2) 4.1 mm

When the electric field is removed, only the magnetic force acts on the electron, providing the centripetal force that keeps the electron in a circular path:

qvB=m\frac{v^2}{r}

where m is the mass of the electron and r is the radius of the trajectory. Solving the formula for r, we find

r=\frac{mv}{qB}=\frac{(9.1 \cdot 10^{-31} kg)(3.38\cdot 10^6 m/s)}{(1.6\cdot 10^{-19} C)(4.62\cdot 10^{-3}T)}=4.2\cdot 10^{-3} m=4.1 mm

3) 7.6\cdot 10^{-9}s

The speed of the electron in the circular trajectory is equal to the ratio between the circumference of the orbit, 2 \pi r, and the period, T:

v=\frac{2\pi r}{T}

Solving the equation for T and using the results found in 1) and 2), we find the period of the orbit:

T=\frac{2\pi r}{v}=\frac{2\pi (4.1\cdot 10^{-3} m)}{3.38\cdot 10^6 m/s}=7.6\cdot 10^{-9}s

7 0
2 years ago
A particle at 9 AM is moving towards the east at 4 ms At 12 noon, it changes its velocity and starts moving towards the north un
nexus9112 [7]

Answer:

Explanation:

Acceleration is the time rate of change of velocity.

Acceleration and velocity are vectors

If east and north are the positive directions, the east moving vector is reduced to zero and the north moving vector increases from zero to 4 m/s.

There are 3 hours or 10800 seconds between 10 AM and 1 PM

a1 = √((-4)² + 4²) / 10800 = (√32) / 10800 m/s² ≈ 4.2 x 10⁻⁴ m/s²

There are 14400 seconds between 10 AM and 2 PM

The velocity changes are still the same

a2 = √((-4)² + 4²) / 10800 = (√32) / 14400 m/s² ≈ 3.9 x 10⁻⁴ m/s²

7 0
2 years ago
What is the gravitational force of attraction between a planet and a 17-kilogram mass that is falling freely toward the surface
PolarNik [594]

Answer:

a. 150 N

Explanation:

Gravitational Force: This is the force that act on a body under gravity.

The gravitational force always attract every object on or near the earth's surface. The earth therefore, exerts an attractive force on every object on or near it.

The S.I unit of gravitational force is Newton(N).

Mathematically, gravitational force of attraction is expressed as

(i) F = GmM/r² ........................ Equation 1 ( when it involves two object of different masses on the earth)

(ii) F = mg ............................... Equation 2 ( when it involves one mass and the gravitational field).

Given: m = 17 kg, g = 8.8 m/s²

Substituting into equation 2,

F = 17(8.8)

F = 149.6 N

F ≈ 150 N.

Thus the gravitational force = 150 N

The correct option is a. 150 N

5 0
2 years ago
Other questions:
  • Calculate the volume of a liquid with a density of 5.45 g/ml and a mass of 65g
    6·1 answer
  • Locate the element calcium (Ca) on the periodic table and click on the square. Read about the properties of calcium. Why might c
    12·2 answers
  • Argelia has a stack of schoolbooks sitting in the backseat of her car. When Argelia makes a sharp right turn, the books slide to
    11·2 answers
  • Suppose you look out the window of a skyscraper and see someone throw a tomato downward from above your window. your window is a
    8·1 answer
  • On a dry day, just after washing your hair to remove natural oils and drying it thoroughly, run a plastic comb through it. Small
    15·1 answer
  • Identify the arrows that show input force
    14·2 answers
  • where again p is the phonon momentum, E is the photon energy and c is the speed of light. When you divide the photon energy foun
    6·1 answer
  • Which description best explains a molecular bonding?
    5·1 answer
  • Find the network done by friction on a box that moves in a complete circle of radius 1.82 m on a uniform horizontal floor. The c
    9·2 answers
  • A 2-kg toy car accelerates from 0 to 5 m/s2. It
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!