In order to construct this equation, we will use the variables:
V to represent mixture volume (40 ml)
C to represent mixture concentration (0.32)
v₁ to represent volume of first solution (40 / 4 = 10 ml)
c₁ to represent concentration of first solution (0.2)
v₂ to represent the volume of the second solution (40 * 3/4 = 30 ml)
c₂ to represent the concentration of the second solution
We know that the total amount of substance, product of the volume and concentration, in the final solution is equal to the individual amounts in the two given solutions. Thus:
VC = v₁c₁ + v₂c₂
40(0.32) = 10(0.2) + 30c
All you have to do is divide the volume of the container (43.875) by 5 (length) and 3.9 (width) because the formula for the volume of a rectangular prism is V=lwh. So the answer/height of the storage container is 2.25 meters
Given that mean=56.1 and standard deviation=8.2, P(x>67.5) will be found as follows:
The z-score is given by:
z=(x-μ)/σ
thus the z-score will be given by:
z=(67.5-56.1)/8.2
z=11.4/8.2
z=1.39
thus
P(z=1.39)=0.9177
thus:
P(x>67.5)=1-P(z>0.9177)
=1-0.9177
=0.0823
Answer: A. 0.0823
(6,-3)(-4,-9)
slope(m) = (-9 -(- 3) / (-4 - 6) = (-9 + 3) / -10 = -6/-10 = 3/5
y - y1 = m(x - x1)
slope(m) = 3/5
(6,-3)....x1 = 6 and y1 = -3
now we sub
y - (-3) = 3/5(x - 6) =
y + 3 = 3/5(x - 6) <==
To determine the cost of each item, we need to set up equations. From the problem statement, we have three unknowns so we need three equations. We set up equations as follows:
let x cost of small pizzas
y cost of soda
z cost of salad
two small pizzas, a liter of soda, and a salad cost $14
2x + y + z = 14
one small pizza, a liter of soda, and three salads cost $15
x + y + 3z = 15
three small pizzas, a liter of soda, and two salads cost $22
3x + y + 2z = 22
Solving for x, y and z, we will have:
x = $ 5
y = $ 1
z = $ 3