Answer:
2 that is Calcium (Ca) and Manganese (Mn)
Explanation:
Add dithizone in chloroform and look for a red complex formation.
Solution:
After the reaction of mixture is worked-up Washing three times the organic with sodium carbonate helps to decrease the solubility of the organic layer into the aqueous layer. This allows the organic layer to be separated more easily.
And then the reaction washed by saturated NACL we have The bulk of the water can often be removed by shaking or "washing" the organic layer with saturated aqueous sodium chloride (otherwise known as brine). The salt water works to pull the water from the organic layer to the water layer.
Answer:
Option D is correct.
H₂O + CO₂ → H₂CO₃
Explanation:
First of all we will get to know what law of conservation of mass states.
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Example:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two hydrogen and two oxygen atoms present on left side while on right side only one oxygen and two hydrogen atoms are present so mass in not conserved. This equation not follow the law of conservation of mass.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side while on right side two hydrogen, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of chemical equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. Thus is correct option.
Answer:
104.84 moles
Explanation:
Given data:
Moles of Boron produced = ?
Mass of B₂O₃ = 3650 g
Solution:
Chemical equation:
6K + B₂O₃ → 3K₂O + 2B
Number of moles of B₂O₃:
Number of moles = mass/ molar mass
Number of moles = 3650 g/ 69.63 g/mol
Number of moles = 52.42 mol
Now we will compare the moles of B₂O₃ with B from balance chemical equation:
B₂O₃ : B
1 : 2
52.42 : 2×52.42 = 104.84
Thus from 3650 g of B₂O₃ 104.84 moles of boron will produced.
Answer:
2.4 ×10^24 molecules of the herbicide.
Explanation:
We must first obtain the molar mass of the compound as follows;
C3H8NO5P= [3(12) + 8(1) + 14 +5(16) +31] = [36 + 8 + 14 + 80 + 31]= 169 gmol-1
We know that one mole of a compound contains the Avogadro's number of molecules.
Hence;
169 g of the herbicide contains 6.02×10^23 molecules
Therefore 669.1 g of the herbicide contains 669.1 × 6.02×10^23/ 169 = 2.4 ×10^24 molecules of the herbicide.