Volume of tank =
(given)
Since,
So,

For
:

The significant rule for multiplication, states that the number of significant figures in the answer obtained by multiplication is determined by the value with the lowest number of significant digits.
Since, the minimum number of decimal places in the above multiplication operation is 1 so, the final result must be upto 1 decimal place only.

Hence, volume in
is 243.5.
I believe the answer is sugar crystals with stirring at 15 degrees Celsius.
Solubility is the maximum amount of a substance that will dissolve in a given amount of solvent at a specific temperature. There are two major factors that affect solubility are temperature and pressure. Temperature affects solubility of both solids and gases, but pressure only affects the solubility of gases. Increasing the surface area of solutes also increases the solubility.
Diluted by a factor of two means that we double the volume of the solution by adding an equal volume of the water.
if we diluted it by a factor of one so the new concentration = 0.1/2=0.05 M and diluted by a factor of two so, the new concentration will be 0.05/2 = 0.025 M
Answer:
Molecular formula for the gas is: C₄H₁₀
Explanation:
Let's propose the Ideal Gases Law to determine the moles of gas, that contains 0.087 g
At STP → 1 atm and 273.15K
1 atm . 0.0336 L = n . 0.082 . 273.15 K
n = (1 atm . 0.0336 L) / (0.082 . 273.15 K)
n = 1.500 × 10⁻³ moles
Molar mass of gas = 0.087 g / 1.500 × 10⁻³ moles = 58 g/m
Now we propose rules of three:
If 0.580 g of gas has ____ 0.480 g of C _____ 0.100 g of C
58 g of gas (1mol) would have:
(58 g . 0.480) / 0.580 = 48 g of C
(58 g . 0.100) / 0.580 = 10 g of H
48 g of C / 12 g/mol = 4 mol
10 g of H / 1g/mol = 10 moles
Answer: The
for the given chemical reaction is -175.51 kJ/mol
Explanation: Enthalpy change of the reaction is defined as the amount of heat released or absorbed in a given chemical reaction.
Mathematically,

We are given a chemical reaction. The reaction follows:




Enthalpy change for the reaction of he given chemical reaction is given by:

Putting the values in above equation, we get

