18 x 40 = 720 per week.....720 x 4 = 2880 per month earnings
net pay = 0.72(2880) = 2073.60 <=== cash inflow.
how much he spends per month is his cash outflow.
Answer:
he can expect to lose 0.5$
Step-by-step explanation:
To solve this problem we must calculate the expected value of the game.
If x is a discrete random variable that represents the gain obtained when rolling a dice, then the expected value E is:

When throwing a dice the possible values are:
x: 1→ -$9; 2→ $4; 3→ -$9; 4→ $8; 5→ -$9; 6→ $12
The probability of obtaining any of these numbers is:

The gain when obtaining an even number is twice the number.
The loss to get an odd number is $ 9
So the expected gain is:

Answer:
0.00
Step-by-step explanation:
If the national average score on a standardized test is 1010, and the standard deviation is 200, where scores are normally distributed, to calculate the probability that a test taker scores at least 1600 on the test, we should first to calculate the z-score related to 1600. This z-score is
, then, we are seeking P(Z > 2.95), where Z is normally distributed with mean 0 and standard deviation 1. Therefore, P(Z > 2.95) = 0.00

Answer:
12.0 tablet computers/month
Step-by-step explanation:
The average price of the tablet 25 months from now will be:

Next, we determine the rate at which the quantity demanded changes with respect to time.
Using Chain Rule (and a calculator)

![\dfrac{dx}{dp}= \dfrac{d}{dp}\left[{ \dfrac { 100 } { 9 } \sqrt { 810,000 - p ^ { 2 } } }\right] =-\dfrac{100}{9}p(810,000-p^2)^{-1/2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdp%7D%3D%20%5Cdfrac%7Bd%7D%7Bdp%7D%5Cleft%5B%7B%20%5Cdfrac%20%7B%20100%20%7D%20%7B%209%20%7D%20%5Csqrt%20%7B%20810%2C000%20-%20p%20%5E%20%7B%202%20%7D%20%7D%20%7D%5Cright%5D%20%3D-%5Cdfrac%7B100%7D%7B9%7Dp%28810%2C000-p%5E2%29%5E%7B-1%2F2%7D)
![\dfrac{dp}{dt}=\dfrac{d}{dt}\left[\dfrac { 400 } { 1 + \dfrac { 1 } { 8 } \sqrt { t } } + 200 \right]=-25\left[1 + \dfrac { 1 } { 8 } \sqrt { t } \right]^{-2}t^{-1/2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdp%7D%7Bdt%7D%3D%5Cdfrac%7Bd%7D%7Bdt%7D%5Cleft%5B%5Cdfrac%20%7B%20400%20%7D%20%7B%201%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%7D%20%2B%20200%20%5Cright%5D%3D-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%5Cright%5D%5E%7B-2%7Dt%5E%7B-1%2F2%7D)
Therefore:
![\dfrac{dx}{dt}= \left[-\dfrac{100}{9}p(810,000-p^2)^{-1/2}\right]\left[-25\left[1 + \dfrac { 1 } { 8 } \sqrt { t } \right]^{-2}t^{-1/2}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%3D%20%5Cleft%5B-%5Cdfrac%7B100%7D%7B9%7Dp%28810%2C000-p%5E2%29%5E%7B-1%2F2%7D%5Cright%5D%5Cleft%5B-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%5Cright%5D%5E%7B-2%7Dt%5E%7B-1%2F2%7D%5Cright%5D)
Recall that at t=25, 
Therefore:
![\dfrac{dx}{dt}(25)= \left[-\dfrac{100}{9}\times 446.15(810,000-446.15^2)^{-1/2}\right]\left[-25\left[1 + \dfrac { 1 } { 8 } \sqrt {25} \right]^{-2}25^{-1/2}\right]\\=12.009](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%2825%29%3D%20%5Cleft%5B-%5Cdfrac%7B100%7D%7B9%7D%5Ctimes%20446.15%28810%2C000-446.15%5E2%29%5E%7B-1%2F2%7D%5Cright%5D%5Cleft%5B-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B25%7D%20%5Cright%5D%5E%7B-2%7D25%5E%7B-1%2F2%7D%5Cright%5D%5C%5C%3D12.009)
The quantity demanded per month of the tablet computers will be changing at a rate of 12 tablet computers/month correct to 1 decimal place.