answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yulyashka [42]
2 years ago
7

A composite figure is comprised of a square and 4 semicircles. How can you decompose the composite figure to determine its area?

as a pentagon and four semicircles as two rectangles and four circles as a square and four semicircles as two triangles and four circles
Mathematics
2 answers:
serious [3.7K]2 years ago
8 0

Answer: c on edge 2020

Step-by-step explanation:

tangare [24]2 years ago
5 0

Answer:

As a square and four semi circles

Step-by-step explanation:

You might be interested in
Jonathons piggy bank contains 20 nickels 30 quarters and 50 one dollar coins. He picks 20 coins from the bank at random
fredd [130]

Answer:

All in all, Jonathan's piggy bank contains 100 coins. Among these coins, only 50 are one-dollar coins. Therefore, the theoretical probability of picking one-dollar coin from the piggy bank is equal to 50/100 or 1/2.  

Similarly, from the experiment, 20 coins were picked and among these there are 12 one-dollar coins. The answer to the second question is therefore 12/20 or 3/5.

Step-by-step explanation:

4 0
2 years ago
Gavin and Jack are practicing shots against their goalie. On their last 15 attempts, Gavin made 6 and Jack made 7. Based on this
statuscvo [17]

Answer:

\dfrac{14}{75}

Step-by-step explanation:

Gavin made 6 out of 15 shots, so the probability that Gavin's next shot will be  successful is

\dfrac{6}{15}=\dfrac{2}{5}

Jack made 7 out of 15 shots, so the probability that Jack's next shot will be  successful is

\dfrac{7}{15}

The probability that they both make their next shot successfully is

\dfrac{2}{5}\cdot \dfrac{7}{15}=\dfrac{14}{75}

5 0
2 years ago
Approximate the area under the curve y = x² from x = 2 to x = 5 using a Right Endpoint approximation with 6 subdivisions.
Tanzania [10]

Answer:

\text{Area}\,=36.75

Step-by-step explanation:

Using right estimation point simply means to form a bunch of rectangles between the two limits, x =2 and x = 5. and add the areas of all those rectangles.

There must be 6 subdivisions between 2 and 5. so, to do that:

\Delta{x}=\dfrac{5-2}{6}=0.5

the length of each subdivision is 0.5 units. That also means that the 6 rectangles in between the limits will each have the base length of 0.5 units.

So the endpoints of each subdivision from 3 to 5 will be:

\begin{tabular}{|c|c|c|c|c|}3&3.5&4&4.5&5\\\end{tabular}

By <em>right </em>endpoint approx<em>, </em>we mean that the height of the rectangles will be determined by the right endpoint of each subdivision, that is, it must be equal to the function value of the first limit.

\begin{tabular}{|c|c|c|}subdivision&$x$&height($y=x^2$)&3 to 3.5&3.5&12.25&3.5 to 4&4&16&4 to 4.5&4.5&20.25&4.5 to 5&5&25\end

Note that we have used the right-end-point of the subdivision to determine the height the rectangles.

All that's left to do now is to simply calculate the areas of the each of the rectangles. And add them up.

the base of each of the rectangle is \Delta{x}=0.5

and the height is determined in the table above.

\text{Area}\,=(0.5\times12.25)+(0.5\times16)+(0.5\times20.25)+(0.5\times25)

\text{Area}\,=0.5(12.25+16+20.25+25)

\text{Area}\,=36.75

3 0
2 years ago
Use Pythagorean identities to prove whether ΔLMN is a right, acute, or obtuse triangle. Show all work for full credit.
liq [111]
Using Pythagorean identities:
 
If the sum of the height and base squared is greater than the hypotenuse squared, it would be an acute triangle.

If the sum of the height and base squared is less than the hypotenuse squared, it would be an obtuse triangle.

If the sum of the height and base squared is equal to the hypotenuse squared, it would be a right triangle.

The height = 10
The base = 24

10^2 + 24^2 = 100 + 576 = 676

The hypotenuse = 27 = 27^2 = 729

Because the sum of the height and base squared (676) is smaller than the hypotenuse squared (729) the triangle  is an obtuse triangle.


5 0
2 years ago
Read 2 more answers
A carpenter made a wooden structure using one cube and one triangular prism. The diagram shows the structure. The carpenter is o
agasfer [191]

Answer:

Option B

3.75\ in^2

Step-by-step explanation:

we know that

The surface area of the front side is equal to the area of a square face of the cube plus the area of a right triangle of the triangular prism

so

SA=(1.5)^2+\frac{1}{2}(3.5-1.5)(1.5)

SA=2.25+1.50=3.75\ in^2

6 0
2 years ago
Other questions:
  • The distance between city A and city B is 22 miles. The distance between city B and city C is 54 miles. The distance between cit
    6·2 answers
  • Ruby wants to start her own business taking photographs. She already has her own camera, but needs to purchase lights, a photo p
    12·1 answer
  • Amira is writing a coordinate proof to show that the area of a triangle created by joining the midpoints of an isosceles triangl
    12·2 answers
  • A large city in the ancient world was square-shaped. measured in miles, its area numerically exceeded its perimeter by about 132
    14·1 answer
  • One can convert temperature from Fahrenheit into Newton using the formula N=11/60(F-32) . What is the temperature in Fahrenheit
    15·1 answer
  • Complete the point-slope equation of the line through (8,-8)(8,−8)left parenthesis, 8, comma, minus, 8, right parenthesis and (9
    14·1 answer
  • Cameron wondered if the average score on a final exam was different between those who texted on a regular basis during the lectu
    9·1 answer
  • The program recommends a constant intensity for 3 visits,
    10·2 answers
  • A bicycle tire has a radius of 5 inches. To the nearest inch, how far does the tire travel when it makes 8 revolutions?
    12·1 answer
  • Simplify 2p × 3p2 ×4p3​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!