Answer:


<em>f(x) and g(x) and not inverse functions</em>
Step-by-step explanation:
Given


Required
Determine f(g(x))
Determine g(f(x))
Determine if both functions are inverse:
Calculating f(g(x))



Expand Brackets




Calculating g(f(x))




Expand Brackets



Checking for inverse functions

Represent f(x) with y

Swap positions of x and y

Subtract 9 from both sides



Divide through by 3


Take square root of both sides


Represent y with g(x)

Note that the resulting value of g(x) is not the same as 
<em>Hence, f(x) and g(x) and not inverse functions</em>
Let's convert the task into an example, simplifyng which will make us able to get the answer.
So, according to the task:
![\sqrt[9]{x} * \sqrt[9]{x} * \sqrt[9]{x} * \sqrt[9]{x} = \sqrt[1/ 9 ]{x} * \sqrt[1/9]{x} * \sqrt[1/9]{x} * \sqrt[1/9]{x}](https://tex.z-dn.net/?f=%20%20%5Csqrt%5B9%5D%7Bx%7D%20%2A%20%20%5Csqrt%5B9%5D%7Bx%7D%20%2A%20%20%5Csqrt%5B9%5D%7Bx%7D%20%2A%20%20%5Csqrt%5B9%5D%7Bx%7D%20%0A%0A%3D%20%20%20%5Csqrt%5B1%2F%209%20%5D%7Bx%7D%20%2A%20%20%5Csqrt%5B1%2F9%5D%7Bx%7D%20%2A%20%20%5Csqrt%5B1%2F9%5D%7Bx%7D%20%2A%20%20%5Csqrt%5B1%2F9%5D%7Bx%7D%20)
Now we can simplify:
![\sqrt[1/9]{x} + 1/9+1/9+1/9 = x^{4/9}](https://tex.z-dn.net/?f=%20%5Csqrt%5B1%2F9%5D%7Bx%7D%20%2B%201%2F9%2B1%2F9%2B1%2F9%0A%0A%3D%20x%5E%7B4%2F9%7D%20)
So the answer is <span>
C:x to the four ninths power</span>
Answer:
The one with arrows are the answers
->Line segment E B is bisected by Line segment D F .
->A is the midpoint of Line segment F C .
Line segment F C bisects Line segment D B.
->Line segment E B is a segment bisector.
->FA = One-halfFC.
Line segment D A is congruent to Line segment A B .
Step-by-step explanation:
I did it on edge and got it right