Answer:
The sum is 1575.
Step-by-step explanation:
Consider the provided information.
It is given that positive integers smaller than 1000 and that can be written in the form 
Where n is integer that means the value of n can be a positive number or a negative number.
For n = 0

For n=-1

For n=-2

For n = -3 the obtained number is not an integer.
Now consider the positive value of n.
For n=1

For n=2

For n=3

For n=4 the obtained number is greater than 1000.
Now add all the numbers.

Hence, the sum is 1575.
<span>2/15 if drawn without replacement.
1/9 if drawn with replacement.
Assuming that the chips are drawn without replacement, there are 6 * 5 different possibilities. And that's a low enough number to exhaustively enumerate them. So they are:
1,2 : 1,3 : 1,4 : 1,5 : 1,6
2,1 : 2,3 : 2,4 : 2,5 : 2,6
3,1 : 3,2 : 3.4 : 3,5 : 3,6
4,1 : 4,2 : 4.3 : 4,5 : 4,6
5,1 : 5,2 : 5.3 : 5,4 : 5,6
6,1 : 6,2 : 6.3 : 6,4 : 6,5
Of the above 30 possible draws, there are 4 that add up to 5. So the probability is 4/30 = 2/15
If the draw is done with replacement, then there are 36 possible draws. Once again, small enough to exhaustively list, they are:
1,1 : 1,2 : 1,3 : 1,4 : 1,5 : 1,6
2,1 : 2,2 : 2,3 : 2,4 : 2,5 : 2,6
3,1 : 3,2 : 3,3 : 3.4 : 3,5 : 3,6
4,1 : 4,2 : 4.3 : 4,4 : 4,5 : 4,6
5,1 : 5,2 : 5.3 : 5,4 : 5,5 : 5,6
6,1 : 6,2 : 6.3 : 6,4 : 6,5 : 6,6
And of the above 36 possibilities, exactly 4 add up to 5. So you have 4/36 = 1/9</span>
Answer:
- Fantasy: 3 barrels
- Ecstasy: 1 barrel
Step-by-step explanation:
<u>Given</u>
Fantasy uses 4 lb of nuts, 3 lb of chocolate, for a profit of $50
Ecstasy uses 4 lb of nuts, 1 lb of chocolate, for a profit of $40
In stock are 16 lb of nuts, 10 lb of chocolate
<u>Find</u>
amount of each to maximize profit
<u>Solution</u>
Let x and y represent barrels of Fantasy and Ecstasy, respectively. Then the limitations on production are ...
4x +4y ≤ 16 . . . lb of nuts
3x +y ≤ 10 . . . . lb of chocolate
We want to maximize
50x +40y
The graph shows the feasible region. Its vertices are ...
(0, 4), (3, 1), (3.33, 0)
Profit is maximized at $190 when production is 3 barrels of Fantasy and 1 barrel of Ecstasy.