<span>I would measure the mass of the solid substance. I would prepare a known mass of room temperature water large enough to submerge the solid substance in question. I would place the water in an insulated container. Then I would heat the solid substance to a known temperature. I would measure the temperature of the heated sample and the water. Then I would submerge the sample in the water and allow the sample and the water to reach the same temperature. I would measure this equilibrium temperature.
I would interpret the difference in temperature between the heated sample and the equilibrium temperature as the change in temperature in the sample. Given the known mass, the beginning temperature of the water, and the equilibrium temperature I can determine how much energy was transferred from the heated sample to the water.
Now the mass of the sample, a change in temperature in the solid substance, and the amount of energy transferred to create the temperature is known. This is sufficient to determine the specific heat of the solid substance</span>
The net ionic equation of borax hydrolysis would be:
<span>Na2B4O7 + 7H2O-----------------> 2 NaOH + 4 H3BO3
</span>
Wherein 2 moles of sodium hydroxide and 4 moles of boric acid are produced by the hydrolysis.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
When the operation of the voltaic cell, which is formed of an aluminum and silver strip takes place, the atom of aluminum loses three of its electrons and the Al3+ formed moves within the solution. The Al3+ ion gets dissolved within the solution and the electrons lost in the process moves through the wire and get acquired by the ions of silver, which then get reduced to solid Ag resulting in the mass gain of silver strip.
10 g of glue with 13 g of water ,
Mass ratio of the material can be calculated as:
8 g of sodium borate suspended in 11 g of water, mass ratio can be calculated as:

Answer:
The actual Van't Hoff factor for AlCl3 is 3.20
Explanation:
Step 1: Data given
Molarity of AlCl3 = 0.050 M
osmotic pressure = 3.85 atm
Temperature = 20 °C
Step 2: Calculate the Van't Hoff factor
AlCl3(aq) → Al^3+(aq) + 3Cl^-(aq)
The theoretical value is 4 ( because 1 Al^3+ ion + 3 Cl- ions) BUT due to the interionic atractions the actual value will be less
Osmotic pressure depends on the molar concentration of the solute but not on its identity., and is calculated by:
π = i.M.R.T
⇒ with π = the osmotic pressure = 3.85 atm
⇒ with i = the van't Hoff factor
⇒ with M = the molar concentration of the solution = 0.050 M
⇒ with R = the gas constant = 0.08206 L*atm/K*mol
⇒ with T = the temperature = 20 °C = 293.15 Kelvin
i = π /(M*R*T
)
i = (3.85) / (0.050*0.08206*293.15)
i = 3.20
The actual Van't Hoff factor is 3.20