Answer:
Step-by-step explanation:
Given that Bill, George, and Ross, in order, roll a die.
The first one to roll an even number wins and the game is ended.
Since Bill starts the game he can win by throwing even number or lose by throwing odd number
P(win) = 0.5, otherwise, the die will go to George. For Bill to win, both George and Ross should throw an odd number so that Bill again gets the chance with game non ending.
Thus we have Prob of Bill winning =P of Bill winning in I throw +P of Bill winning in his II chance of throw +....infinitely
To get back the dice once he loses probability
= p both throws odd = 
Thus Prob for Bill winning
= 
This is an infinite geometric series with I term 0.5 and common ratio 0.125<1
Sum = 
the prime factorization is 99
Answer:
The points are randomly scattered with no clear pattern
The number of points is equal to those in the scatterplot.
Step-by-step explanation:
The points in the residual plot of the line of best fit that is a good model for a scatterplot are randomly scattered with no clear pattern (like a line or a curve).
The number of points in the residual plot is always equal to those in the scatterplot.
It doesn't matter if there are about the same number of points above the x-axis as below it, in the residual plot.
The y-coordinates of the points are not the same as the points in the scatterplot.
Answer:
d. r/12 = 3
Step-by-step explanation:
r = 3(12)
r/12 = 3