Answer with explanation:
it is given that ,in ΔABC,
∠BAD=20°, and ∠CAD=54°
We have to adjust point D,so that measure of angle BAD is equal to the measure of angle CAD.
that is, if point D is moved to right of B,then ∠BAD increases from 20° to (20+x)° and ∠CAD decreases from 54° to (54-x)°.
→20 +x=54-x
⇒ 2 x= 54 -20
⇒2 x=34
x=17°
Using angle bisector theorem, if AD bisects ∠B AC.

so,
If, ∠BAD=∠CAD=37°, then
1. AD bisects ∠B AC.→→→Option A
The value of b is -6.
Explanation:
The expression is 
To determine the value of b, we shall solve the expression.
Applying exponent rule,
, we get,

Applying exponent rule,
, we have,

The expression is of the form,
then 
Applying this rule, we get,

Dividing both sides by 4, we have,

Hence, the value of b is -6.
solution:
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
find the probability that (p∧ ≤ 0.06) , substitute the values of sample units (n) , and the probability of nonconformities (p) in the probability mass function of binomial distribution.
Consider x to be the number of non-conformities. It follows a binomial distribution with n being 50 and p being 0.03. That is,
binomial (50,0.02)
Also, the estimate of the true probability is,
p∧ = x/50
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
The calculation is obtained as
P(p^ ≤ 0.06) = p(x/20 ≤ 0.06)
= 50cx ₓ (0.03)x ₓ (1-0.03)50-x
= (50c0 ₓ (0.03)0 ₓ (1-0.03)50-0 + 50c1(0.03)1 ₓ (1-0.03)50-1 + 50c2 ₓ (0.03)2 ₓ (1-0.03)50-2 +50c3 ₓ (0.03)3 ₓ (1- 0.03)50-3 )
=( ₓ (0.03)0 ₓ (1-0.03)50-0 + ₓ (0.03)1 ₓ (1-0.03)50-1 + ₓ (0.03)2 ₓ (1-0.03)50-2 ₓ (0.03)3 ₓ (1-0.03)50-3 )
<span>If Mary earns 7$ an hour, we need to multiplicate 7$ by the number of hours worked for the entire week so we can get the salary per week. And when we want to know how many hours she had worked, we have to "transform" the equation :
Salary per week = salary per hours x worked hours
Here, we know to informations : salary per hours and salary per week.
Worked hours = salary per week / salary per day
Worked hours = 143.50 / 7
Worked hours = 20.5
The greatest number of hours thats he works is 20h30.</span>