Answer:
Step-by-step explanation:
Confidence interval for the difference in the two proportions is written as
Difference in sample proportions ± margin of error
Sample proportion, p= x/n
Where x = number of success
n = number of samples
For district C,
x = 22
n1 = 100
p1 = 22/100 = 0.22
For district M,
x = 26
n2 = 100
p2 = 26/100 = 0.26
Margin of error = z√[p1(1 - p1)/n1 + p2(1 - p2)/n2]
To determine the z score, we subtract the confidence level from 100% to get α
α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025
This is the area in each tail. Since we want the area in the middle, it becomes
1 - 0.025 = 0.975
The z score corresponding to the area on the z table is 1.96. Thus, the z score for the confidence level of 95% is 1.96
Margin of error = 1.96 × √[0.22(1 - 0.22)/100 + 0.26(1 - 0.26)/100]
= 1.96 × √0.00364
= 0.12
Confidence interval = (0.22 - 0.26) ± 0.12
= - 0.04 ± 0.12