Answer:
$95.78
Step-by-step explanation:
f(t) = 300t / (2t² + 8)
t = 0 corresponds to the beginning of August. t = 1 corresponds to the end of August. t = 2 corresponds to the end of September. So on and so forth. So the second semester is from t = 5 to t = 10.
$T₂ = ∫₅¹⁰ 300t / (2t² + 8) dt
$T₂ = ∫₅¹⁰ 150t / (t² + 4) dt
$T₂ = 75 ∫₅¹⁰ 2t / (t² + 4) dt
$T₂ = 75 ln(t² + 4) |₅¹⁰
$T₂ = 75 ln(104) − 75 ln(29)
$T₂ ≈ 95.78
Answer:
Volume of the right pyramid = 288 m²
Step-by-step explanation:
Volume of the pyramid = 
From the ΔAOB,
By Pythagoras theorem,
AB² = AO² + OB²
(6√2)² = AO² + (6)²
72 = AO² + 36
AO = √(36) = 6 m
Since base of the pyramid is a square so area of the base = (Length × Width) = (side)²
Now volume of the pyramid = ![\frac{1}{3}[(Length)(width)]\times height](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%5B%28Length%29%28width%29%5D%5Ctimes%20height)
= 
= 288 m²
Therefore, volume of the right pyramid is 288 m².
Answer:
150 oz.
Step-by-step explanation:
There are already 150 ounces of alloy of nickel.
Of this 150 oz, 70% is pure i.e. nickel content = 150(0.7) = 105 oz
Now available is
Nickel Other metals
105 45
Let x oz of pure nickel is added.
Then new alloy will have 105+x oz nickel in total of 150+x oz.
Percentage pure = 
Simplify to get

Hence answer is 150 oz should be added.
Answer:
The rational function that is graphed is B
The area of the base would be found using the area of a triangle formula which is 1/2 x base x height.
The base and height are the two sides perpendicular to each other, which are both 5 inches.
The area of the base = 1/2 x 5 x 5 = 12.5 square inches.
The volume of the triangular prism is the area of the base times the height, which is 4 inches.
Volume of the triangular prism is 12.5 x 4 = 50 cubic inches.
Volume of the triangular prism is 1/3 x area of base x height, which is 7:
Volume of the triangular prism = 1/3 x 12.5 x 7 = 29.17 cubic inches.
Total volume = 29.17 + 50 = 79.17 cubic inches.