To get the points at which the two boats meet we need to find the equations that model their movement:
Boat A:
vertex form of the equation is given by:
f(x)=a(x-h)^2+k
where:
(h,k) is the vertex, thus plugging our values we shall have:
f(x)=a(x-0)^2+5
f(x)=ax^2+5
when x=-10, y=0 thus
0=100a+5
a=-1/20
thus the equation is:
f(x)=-1/20x^2+5
Boat B
slope=(4-0)/(10+10)=4/20=1/5
thus the equation is:
1/5(x-10)=y-4
y=1/5x+2
thus the points where they met will be at:
1/5x+2=-1/20x^2+5
solving for x we get:
x=-10 or x=6
when x=-10, y=0
when x=6, y=3.2
Answer is (6,3.2)
Quadratic equation: ax² + bx + c =0
x' = [-b+√(b²-4ac)]/2a and x" = [-b-√(b²-4ac)]/2a
6 = x² – 10x ; x² - 10x -6 =0
(a=1, b= - 10 and c = - 6
x' = [10+√(10²+4(1)(-6)]/2(1) and x" = [10-√(10²+4(1)(-6)]/2(1)
x' =5+√31 and x' = 5-√31
Answer:
2.6779*10^5
Step-by-step explanation:
The problem given is 2.69*10^5 - 1.21*10^3 which is 269000-1210=267790 -> 2.6779*10^5
If you multiply 268 with 6, you get 1608 as your answer.
Answer:
The width is: 
The length is 
Step-by-step explanation:
The given rectangle has area given algebraically by the function:

The width of the rectangle is the greatest common factor of
,
and 
That is the width is: 
We now divide the area by the width to obtain the length of the rectangle:

This simplifies to:

