Answer: The coordinates of point C after the dilation are (-2, 5)
Step-by-step explanation:
I guess that you want to find where the point C ends after the dilation.
Ok, if we have a point (x, y) and we do a dilation with a scale A around the point (a,b), then the dilated point will be:
(a + A*(x - a), b + A*(y - b))
In this case we have:
(a,b) = (2,1) and A = 3.
And the coordinates of point C, before being dilated, are: (1, 2)
Then the new location of the point C will be:
C' = (1 + 3*(1 - 2), 2 + 3*(2 - 1)) = (1 -3, 2 + 3) = (-2, 5)
you have to add 90 +90 3 times then theres your answer :)
So 25.6 + 16.2 + 25.6 + 36.5 + 16.2 + 37.8 = 1961.48
I would say the second statement would best describe her work, because it is giving the most detail out of those statements.
Hope this helps!
~Jarvis
By Green's theorem, the integral of
along
is

which is 6 times the area of
, the region with
as its boundary.
We can compute the integral by converting to polar coordinates, or simply recalling the formula for a circular sector from geometry: Given a sector with central angle
and radius
, the area
of the sector is proportional to the circle's overall area according to

so that the value of the integral is
