Answer: you can use 260 min, 60 min at a fixed price ($20) and extra 200.
Step-by-step explanation:
C(x) = 20 + 0.20(x − 60)
C(x) ≤ 60
20 + 0.20(x − 60) ≤ 60
0.20(x − 60) ≤ 60 - 20
0.20x - 12 ≤ 40
0.20x ≤ 40 + 12
0.20x ≤ 52
x ≤ 52/0.2
x ≤ 260
This way, you can use 260 min, 60 min at a fixed price ($20) and extra 200.
Answer:
62 Sunday papers were sold
Step-by-step explanation:
Let x represent the number of Sunday papers sold. Then half that many, or x/2, is the number of Friday papers sold. The total revenue from the sales is the sum of products of quantity and price:
1.50 · x + 0.75 · (x/2) = 116.25
Multiplying by 2, this becomes ...
3.00x +0.75x = 232.50
3.75x = 232.50
Dividing by the coefficient of x gives ...
232.50/3.75 = x = 62
The number of Sunday newspapers sold is 62.
Answer:
The coordinates of B is (3, - 5)
Step-by-step explanation:
A(6, 1)
C(2, -7)
Coordinates of point B such that AB = 1/3 × BC
Hence we have;

Therefore BC = 3/4 × AC
Hence, AB = 1/3 × BC = 1/3 × 3/4 × AC = 1/4 × AC
AC = √((6 - 2)² + (1 - (-7))²) = √(16 + 64) = √80 = 4·√5
AB = 1/4 × 4·√5 = √5
Therefore;
AB² = (x - 6)² + (y - 1)² = 5
Slope = (1 - (-7))/(6 - 2) = 2
Hence the y coordinate of B = -7 + sin(tan⁻¹(2)) ×√5 = -5
The x coordinate of B = 2 + cos(tan⁻¹(2)) ×√5 = 3
The coordinates of B = (3, - 5)
It is called a scale factor :)
Answer:
1.734
Step-by-step explanation:
Given that:
A local trucking company fitted a regression to relate the travel time (days) of its shipments as a function of the distance traveled (miles).
The fitted regression is Time = −7.126 + .0214 Distance
Based on a sample size n = 20
And an Estimated standard error of the slope = 0.0053
the critical value for a right-tailed test to see if the slope is positive, using ∝ = 0.05 can be computed as follows:
Let's determine the degree of freedom df = n - 1
the degree of freedom df = 20 - 2
the degree of freedom df = 18
At the level of significance ∝ = 0.05 and degree of freedom df = 18
For a right tailed test t, the critical value from the t table is :
1.734