Answer:
a) The data distribution consists of ( 7 )1's (denoting a foreign student) and ( 43 )0's (denoting a student from the U.S.).
b) The population distribution consists of the x-values of the population of 12,152 full-time undergraduate students at theuniversity, ( 6 )% of which are 1's (denoting a foreign student) and ( 94 )% of which are 0's (denoting a student from the U.S.).
c) The mean is ( 0.06 )
The standard deviation is ( 0.0336 )
The sampling distribution represents the probability distribution of the ( sample ) proportion of foreign students in a random sample of ( 50 ) students. In this case, the sampling distribution is approximately normal with a mean of ( 0.06 ) and a standard deviation of ( 0.0336 )
Step-by-step explanation:
You could write a set of equations or use the interest formula, A(t)=P(1+r/n)^nt
where p equals the principal amount, r equals the rate/ percentage of interest, n equals the compounding periods and t equals time
so he's losing 4/10 of a Kg daily, how many times will that equal 3.2 Kgs? namely how many times does 4/10 go into 3.2?
well, let's firstly convert 3.2 to a fraction, and then divide.
![\bf \stackrel{\textit{1 decimal}}{3.\underline{2}}\implies \cfrac{32}{\underset{\textit{1 zero}}{1\underline{0}}}\implies \cfrac{16}{5} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7B1%20decimal%7D%7D%7B3.%5Cunderline%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B32%7D%7B%5Cunderset%7B%5Ctextit%7B1%20zero%7D%7D%7B1%5Cunderline%7B0%7D%7D%7D%5Cimplies%20%5Ccfrac%7B16%7D%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \cfrac{16}{5}\div \cfrac{4}{10}\implies \cfrac{16}{5}\div \cfrac{2}{5}\implies \cfrac{\stackrel{8}{~~\begin{matrix} 16 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{~~\begin{matrix} 5 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\cdot \cfrac{~~\begin{matrix} 5 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{~~\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies 8](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B16%7D%7B5%7D%5Cdiv%20%5Ccfrac%7B4%7D%7B10%7D%5Cimplies%20%5Ccfrac%7B16%7D%7B5%7D%5Cdiv%20%5Ccfrac%7B2%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7B8%7D%7B~~%5Cbegin%7Bmatrix%7D%2016%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B~~%5Cbegin%7Bmatrix%7D%205%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Ccdot%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%205%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B~~%5Cbegin%7Bmatrix%7D%202%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Cimplies%208)
Answer:
The domain of V(h(r)) is restricted to values of r greater than 0
V(h(r)) = 3.5πr^3
The volume depends on the radius of the cylinder
Step-by-step explanation:
Edgenuity