Answer:
Shift 2 unit left
Flip the graph about y-axis
Stretch horizontally by factor 2
Shift vertically up by 2 units
Step-by-step explanation:
Given:
Parent function: 
Transformation function: 
Take -2 common from transform function f(x)
![f(x)=\log[-2(x+2)]+2](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D%2B2)
Now we see the step-by-step translation

Shift 2 unit left ( x → x+2 )

Flip the graph about y-axis ( (x+2) → - (x+2) )
![f(x)=\log[-(x+2)]](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-%28x%2B2%29%5D)
Stretch horizontally by factor 2 [ -x(x+2) → -2(x+2) ]
![f(x)=\log[-2(x+2)]](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D)
Shift vertically up by 2 units [ f(x) → f(x) + 2 ]
![f(x)=\log[-2(x+2)]+2](https://tex.z-dn.net/?f=f%28x%29%3D%5Clog%5B-2%28x%2B2%29%5D%2B2)
Simplify the function:

Hence, Using four step of transformation to get new function 
During her pre-college years, Elise won 30% of the swim races she entered. During college, Elise won 20% of the swim races she entered. We can conclude that, in high school and college combined, Elise won <span>more than 20% but less than 30% of the races she entered</span>
For a probability distribution the expected value is the summation of product of probabilities with their respective data values. Let x be the probability that Jackson goes gym for 2 days and y be the probability that he goes gym for 3 days.
For the given case we have following values and their probabilities:
0 : 0.1
2 : x
3 : y
So the expected value will be = 0(0.1) + 2(x) + 3(y)
Expected value is given to be 2.05. So we can write the equation as:
2x + 3y = 2.05 (Equation 1)
Also for a probability distribution, the sum of probabilities must always equal to 1. So we can set up the second equation as:
0.1 + x + y = 1
x + y = 0.9 (Equation 2)
From Equation 2 we can write the value of x to be x = 0.9 - y. Using this value in equation 1, we get:
2(0.9 - y) + 3y = 2.05
1.8 - 2y + 3y = 2.05
1.8 + y = 2.05
y = 0.25
Using the value of y in equation 2 we get value of x to be 0.65
Therefore we can conclude that:
The probability that Jackson goes to gym for 2 days is 0.65 and the probability that he goes to gym for 3 days is 0.25
Answer:
do you have a photo of the figure?
Answer:
She should buy the monthly plan for the unlimited movies rather than pay $2.99 per movie. This is because, the more she pay that amount for each movie, the higher her expenses would become at the end of each month.
For example, let assume, in a month, she 8 free days (Saturday and Sunday). She paying for each movie each of those days would supersede the amount she could have spent assuming she did the unlimited monthly plan of $7.99.
That notwithstanding other days which will feel like watching movies or the public holidays which she would be free to relax.
Step-by-step explanation: