<span>11,550 km has to be changed to 11,550,000 meters
G · m · t² = 4 · π² · r³ we can change that to
</span>t² = (4 · π² · r³) / <span>(G · m )
t^2 = 4*PI^2*r^3 / (G*m)
</span>t^2 = 4*PI^2*<span>(11,550,000)^3 / 6.67*10^-11*5.98*10^24kg
t^2 = </span>
<span>
<span>
<span>
6.083*10^22
</span>
</span>
</span>
<span><span>
</span>
</span>
/
<span>
<span>
<span>
3.9</span></span></span>9 * 10^14
t^2 =
<span>
<span>
<span>
152,500,000</span></span></span>
t = <span>12,350 seconds
</span>and its orbital distance it travels is 11,550 * 2*PI = 70,050 kilometers
Therefore, it is traveling at 70,050 km / 12,350 second which equals
5.67 km per second which <em>is 5,670 meters per second.</em>
Source:
http://www.1728.org/kepler3a.htm
Answer:
D) 15
Step-by-step explanation:
The sum of the interior angles of a polygon is given by

We have that, the sum of the interior angles of a polygon is
26 right angles. We want to find n, the number of sides.
We substitute into the formula to get:

Divide through by 90

Divide through by 2



The domain of a function is the set of the possible input values of the function. For example: consider the function f(x) = cos x, the domain of the function is the set of possible values of x.
The cosine function takes x values from all real numbers.
Therefore, the domain of the cosine function is a real numbers.
-10w - 400 = o
w= weeks
o = new outstanding balance
Answer:
Option B -
and 
Step-by-step explanation:
Given : The Thrill amusement park charges an entry fee of $40 and an additional $5 per ride, x. The Splash water park charges an entry fee of $60 and an additional $3 per ride, x.
To find : Which system of equations could be used to determine the solution where the cost per ride of the two amusement parks, y, is the same?
Solution :
Let x be the number of rides and
y be the cost per ride.
According to question,
The Thrill amusement park charges an entry fee of $40 and an additional $5 per ride.
The equation form is 
The Splash water park charges an entry fee of $60 and an additional $3 per ride.
The equation form is 
Therefore, The required system of equations form are
and 
So,Option B is correct.