Answer:
17.60
Step-by-step explanation:
Look at the room carefully, the length of the room is 11 feet
And the height = 10 feet
The area of the 4 walls of the room = 4( 11×10) = 440 sq ft
Area covered by each roll = 25 sq ft
= 440/25 = 17.60 rolls
Therefore we require 17.60 rolls to cover a rectangular room on all four sides.
Answer:
(6,2)
Step-by-step explanation:
Variable Definitions:
x= the number of commercials
y= the number of movies
Each commercial earns Emily $50, so x commercials would earn her 50x dollars in royalties. Each movie earns Emily $150, so y movies would earn her 150y dollars in royalties. Therefore, the total royalties 50x+150y equals $600:
50x+150y=600
Since Emily's songs were played on 3 times as many commercials as movies, if we multiply 3 by the number of movies, we will get the number of commercials, meaning x equals 3y.
x=3y
Write System of Equations:
50x+150y=600
x=3y
Solve for y in each equation:
1) 50x+150y=600
150y=−50x+600
y=-1/3x+4
2) x=3y
y=1/3x
The x variable represents the number of commercials and the yy variable represents the number of movies. Since the lines intersect at the point (6,2) we can say:
Emily's songs were played on 6 commercials and 2 movies.
Scale factor is given by:
(length of larger figure)/(length of smaller figure)=(width of larger figure)/(width of the smaller figure)=3.4
The length of the larger figure will be given by:
length=(scale factor)*(length of smaller figure)
=3.4*6=20.4 cm
width of the larger figure will be given by:
width=(scale factor)*(width of smaller figure)
=3.4*4.5
=15.3 cm
Therefore the dimension of the new parallelogram will be 20.4 cm by 15.3 cm
Solution:
we are given that
Darlene wrote this proof of the identity (x + y)2 - (x - y)2 = 4xy.
we have been asked to find
Which of the following is a justification for Step 3 of her proof?
Step 3 of her proof is

As we can observe inside each of the paranthesis only like terms have been added. It mean the required justification is
C. Combining like terms
Answer:
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Step-by-step explanation:
We have a sample of executives, of size n=160, and the proportion that prefer trucks is 26%.
We have to calculate a 95% confidence interval for the proportion.
The sample proportion is p=0.26.
The standard error of the proportion is:
The critical z-value for a 95% confidence interval is z=1.96.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:

The 95% confidence interval for the population proportion is (0.192, 0.328).
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.