Answer:
the rate of change in volume is dV/dt = 4π mm³/s = 12.56 mm³/s
Step-by-step explanation:
since the volume V of a cylinder is related with the height H and the radius R through:
V = πR²*H
then the change in time is given by the derivative with respect to time t
dV/dt = (∂V/∂R)*(dR/dt) + (∂V/∂H)*(dH/dt)
the change in volume with radius at constant height is
(∂V/∂R) = 2*πR*H
the change in volume with height at constant radius is
(∂V/∂H) = πR²
then
dV/dt = 2π*R*H *(dR/dt) + πR²*(dH/dt)
replacing values
dV/dt = 2π* 2 mm * 20 mm * (-0.1 mm/s) + π (2 mm) ²* 3 mm/s = 4π mm³/s
dV/dt = 4π mm³/s = 12.56 mm³/s
c(x)=9x+89
I know that you don't have the answer listed, but it is the correct answer.
Answer:
6 dm
Step-by-step explanation:
Triangle DBE is similar to triangle ABC, so their side lengths are proportional.
DE/AC = DB/AB
The length of DB can be found from ...
DB +AD = AB
DB = AB -AD = (15 -10) dm = 5 dm
So, we can fill in the proportion:
DE/(18 dm) = (5 dm)/(15 dm)
DE = (18 dm)·(1/3) . . . . . . . . . . simplify, multiply by 18 dm
DE = 6 dm
_____
It can be helpful to draw and label a figure.
Answer:
(3, 5.1)(0, 0)(5, 8.5)
Step-by-step explanation:
A proportional relationship occurs only with a linear relationship that goes through the origin.
Answer:
$26
Step-by-step explanation:
In the picture attached, the table, the plot and the line of best fit are shown. There we can see the next equation:
y = 0.177x + 25.936
where x is the total dollar amount of her customers’ bills and then y is her total daily wages.
This means that even if she serves no customers (x = 0) she will earn $26 ($25.936 rounded to the nearest dollar) for each day of work.