3/4 = 6/x....3/4 = 6/8...notice that proportions are nothing but equivalent fractions
x = 8
9514 1404 393
Answer:
∛(2500π)√37 m² ≈ 120.911 m²
Step-by-step explanation:
If the height is 3 times the diameter, it is 6 times the radius. Then the volume is ...
V = 1/3πr²h
V = 1/3πr²(6r) = 2πr³
For a volume of 100 m³, the radius is ...
100 m³ = 2πr³
r = ∛(50/π) m
The lateral area of the cone is computed from the slant height. For this cone, the slant height is found using the Pythagorean theorem:
s² = r² +(6r)² = 37r²
s = r√37
Then the lateral area is ...
LA = πrs
LA = π(∛(50/π) m)(∛(50/π) m)√37
LA = ∛(2500π)√37 m² ≈ 120.911 m²
<span>if we take the centre of the circle as being the origin, we can say that
x coordinate is :cos o = x/r so x
= r cos o
</span><span>
and
y coordinate : cos(90-teta)= y/r
so y=r*cos(90-teta)
</span><span>
if teta is 29 degrees
y=r*cos(61)
and
x = r * cos(29)</span>
Answer:
There is a 2.28% probability that it takes less than one minute to find a parking space. Since this probability is smaller than 5%, you would be surprised to find a parking space so fast.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X.
Also, a probability is unusual if it is lesser than 5%. If it is unusual, it is surprising.
In this problem:
The length of time it takes to find a parking space at 9 A.M. follows a normal distribution with a mean of 7 minutes and a standard deviation of 3 minutes, so
.
We need to find the probability that it takes less than one minute to find a parking space.
So we need to find the pvalue of Z when 



has a pvalue of 0.0228.
There is a 2.28% probability that it takes less than one minute to find a parking space. Since this probability is smaller than 5%, you would be surprised to find a parking space so fast.
Answer:
<u></u>
Explanation:
The figure attached shows the <em>Venn diagram </em>for the given sets.
<em />
<em><u>a) What is the probability that the number chosen is a multiple of 3 given that it is a factor of 24?</u></em>
<em />
From the whole numbers 1 to 15, the multiples of 3 that are factors of 24 are in the intersection of the two sets: 3, 6, and 12.
There are a total of 7 multiples of 24, from 1 to 15.
Then, there are 3 multiples of 3 out of 7 factors of 24, and the probability that the number chosen is a multiple of 3 given that is a factor of 24 is:
<em><u /></em>
<em><u>b) What is the probability that the number chosen is a factor of 24 given that it is a multiple of 3?</u></em>
The factors of 24 that are multiples of 3 are, again, 3, 6, and 12. Thus, 3 numbers.
The multiples of 3 are 3, 6, 9, 12, and 15: 5 numbers.
Then, the probability that the number chosen is a factor of 24 given that is a multiple of 3 is: